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Although migratory plasticity is increasingly documented, the ecological

drivers of plasticity are not well understood. Predation risk can influence

migratory dynamics, but whether seasonal migrants can adjust their

migratory behaviour according to perceived risk is unknown. We used elec-

tronic tags to record the migration of individual roach (Rutilus rutilus), a

partially migratory fish, in the wild following exposure to manipulation of

direct (predator presence/absence) and indirect (high/low roach density) per-

ceived predation risk in experimental mesocosms. Following exposure, we

released fish in their lake summer habitat and monitored individual migration

to connected streams over an entire season. Individuals exposed to increased

perceived direct predation risk (i.e. a live predator) showed a higher migratory

propensity but no change in migratory timing, while indirect risk (i.e. roach

density) affected timing but not propensity showing that elevated risk carried

over to alter migratory behaviour in the wild. Our key finding demonstrates

predator-driven migratory plasticity, highlighting the powerful role of

predation risk for migratory decision-making and dynamics.
1. Introduction
Billions of animals annually migrate between discrete habitats to enhance fora-

ging, reproduction and survival success [1]. This phenomenon surely ranks

among the most spectacular of animal behaviours, with important conse-

quences not only for the fitness of individual migrants but also for structure

and functioning of entire ecosystems [2,3]. A key question when studying

animal migration is to what degree individual migratory behaviour is obligate

versus facultative [4,5]. Flexibility in migratory behaviour has been demon-

strated in a number of species in response to various ecological factors. For

instance, newts change migratory behaviour in response to population density

and sex ratio [6], and the migratory propensity of tropical manakins is influ-

enced by storm events [7]. Recent experimental work also highlights the

flexibility of a range of migratory traits in fishes in response to feeding con-

ditions [8–11]. However, few studies explicitly focus on predation risk

shaping patterns of seasonal migration, and how migratory decision-making

responds to controlled experimental manipulation of perceived predation risk

has yet to be tested. Partially migratory populations, composed of both seasonal

migrants and year-round residents, offer a unique opportunity to test whether
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Table 1. GLMM output testing the effect of experimental manipulation of
perceived predation risk and body length upon migratory propensity in
roach.

estimate+++++ s.e. z-score p

full model

intercept 24.154+ 2.401 21.73 0.084

predator 1.837+ 0.853 2.154 0.031

density 0.316+ 0.801 0.395 0.693

predator � density 21.272+ 0.939 21.354 0.176

body length 0.014+ 0.018 0.771 0.441

reduced model

intercept 22.12+ 0.284 27.45 ,0.001

predator 0.845+ 0.354 2.40 0.016
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migratory animals are responsive to changes in perceived

predation risk. The roach (Rutilus rutilus) is a common fresh-

water fish and a partial migrant, with migrants making

seasonal journeys from shallow lakes into connected streams

[9,12,13]. Theoretical work suggests that seasonal changes in

a predation/growth (P/G) trade-off between the two habitats

shapes migratory dynamics in this species [14], where

migrants benefit from a reduced predation risk from piscivor-

ous fish and avian predators by refuging in the low-risk

streams during winter [14,15], while paying a foraging cost

by migrating to a relatively food-poor habitat [16]. Moreover,

translocation experiments with roach have highlighted that

individuals can shift their migratory behaviour in response

to environmental factors [17], and hence show some plasticity

in migratory behaviour. These factors, along with our ability

to precisely track migration in individual roach [14] make this

an ideal model system for testing novel hypotheses on the

role of perceived predation risk on migratory decision-

making in the wild. Here, we test the hypothesis that roach

exposed to an elevated perceived predation risk prior to

migration show a greater propensity to migrate, as compared

to roach experiencing experimentally decreased risk. To

achieve this, we combined controlled experiments, where

we manipulated individuals’ perceived predation risk, with

monitoring of their subsequent post-exposure migratory

behaviour under natural field conditions.
2. Material and methods
(a) Study animals and treatments
We transported wild-caught roach from Lake Krankesjön, southern

Sweden, to outdoor experimental facilities at Lund University. We

set up 20 cattle-tank mesocosms (volume 1000 l), each comprising

two compartments, one large (75 � 100 cm) to hold the experimen-

tal roach, and one smaller predator compartment (45 � 100 cm).

For the experimental manipulation of perceived predation risk,

we crossed direct risk (presence/absence of piscivorous pike Esox
lucius) with two levels of density-dependent indirect risk (high:

24 roach, low: five roach) in a 2 � 2 factorial design. Group size

was manipulated as individual perception of risk is expected to

be greater in smaller shoals in strongly gregarious species such as

roach [18,19]. The experiment was initiated 20 September 2013

when roach were randomly allocated to the larger of the tank com-

partments, and single pike (size range 50–63 cm) allocated to the

other compartment in tanks used for manipulation of direct preda-

tion risk. Each treatment combination was replicated five times

(roach: n ¼ 290).

(b) Electronic tagging and migration
On 29 October, all experimental roach were temporarily removed

from the tanks and anaesthetized before being measured for

length (total length: 127.6+0.6 mm; mean+ s.e.) and tagged

with passive integrated transponder tags [20]. The exposure

experiment was terminated on 8 November (49 days exposure).

Some post-tagging mortality occurred and we also excluded

individuals with external injury. Excluded individuals (ca 9.7%)

were similarly distributed across treatments. Remaining individ-

uals (24 and 24 reared at low density, and 108 and 106 reared at

high density, with or without pike, respectively) were then trans-

ported back to Lake Krankesjön. Fish were released at the same

location (within 50 m of each other) in a haphazard order. We

monitored migratory propensity and timing of released individ-

ual fish using paired, fixed-location antenna stations in all three

streams (two inlets and one outlet) connected to the study lake
(see [20,21] for details). Data were collected from time of release

until 1 June 2014.
(c) Data analysis
To analyse the effect of experimental treatment and body length

upon individual migratory propensity (migrant versus resident),

we used a generalized linear mixed model (GLMM) approach

fitted with binomial distribution and logit link function (lme4

R package, glmer procedure). Factors pike (presence/absence),

density (high/low), their interaction term and body length at

tagging were considered as explanatory main effects and tank

identity as a random factor: migratory propensity � pike þ
density þ pike : density þ length þ (1 j tank). The final model

was obtained by a stepwise backward elimination procedure

with selection criteria at a ¼ 0.1. Migratory timing (number of

days from release until a migratory fish was first recorded on

an antenna) was compared between individuals originating

from treatments with or without predators and between individ-

uals reared at high or low density with Mann–Whitney U-tests.

For details on data treatment, rearing and tagging protocols, see

the electronic supplementary material.
3. Results
In total, 43 out of the 262 tagged and released individuals

migrated during the study period and the majority (ca 88%)

returned to the lake habitat (i.e. had their last registration on

the antenna closest to the lake). There were no differences in

return rate between fish from different exposure treatments.
The GLMM revealed that migratory probability was signifi-

cantly influenced by perceived direct predation risk (table 1

and figure 1). However, neither density, the predator � density

interaction term, nor individual body length were significant

(table 1). Hence, the migratory propensity among individuals

experiencing increased predation risk via experimental

exposure to a live predator was significantly higher than for

individuals originating from experimental environments

absent of predators. Finally, fish left the lake throughout

autumn, winter and spring (range: 15 November–22 April)

but there was no significant difference in migratory timing

between individuals exposed to the presence or absence of

pike (U ¼ 175, z ¼ 20.726, n ¼ 43, p ¼ 0.468). However,

fish originating from the low-density treatment migrated
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0.3

0.2

0.1

0

low density
high density

50

40

30

20

10

0

pr
ob

ab
ili

ty
 o

f 
m

ig
ra

tio
n

m
ig

ra
nt

s 
(%

)

no predator predator

Figure 1. Visualization of the GLMM results with estimated migration prob-
abilities (closed circles, +s.e.) for roach following experimental exposure to
the absence or presence of a predator. Bars show the percentage of migrants
originating from no predator/predator and low/high roach density treatment
combinations.
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earlier than fish from the high-density treatment (U ¼ 97,5,

z ¼ 22.187, n ¼ 43, p ¼ 0.029).
4. Discussion
Our results indicate that perceived predation risk can influence

migratory dynamics in the wild, and also suggest behavioural

flexibility and rapid response to ecological shifts in predator

communities in migratory animals such as roach. Roach that

experienced exposure to a live predator (elevated perceived

direct risk) demonstrated higher migration propensity than

fish from treatments without predators, and were thus respon-

sive to prior, experienced predation threat in the decision to

migrate or not. Indirect risk (here conspecific density) did not

however affect migratory propensity, but instead migratory

timing, highlighting that direct and indirect perceived preda-

tion risks work in concert to shape migratory decision-

making in this species. Our major result was thus in line with

our initial prediction: perceived predation risk can be a trigger

for facultative migration. We recognize that we have no direct

data on the survival of fish in the lake during this period. Thus,

one might speculate that fish originating form experimental

environments absent of predators suffered a higher mortality

in the lake prior to migration than fish in the predator exposure

treatment, potentially due to changes in responsiveness to
predators. However, this is unlikely to be the case as a

number of studies have shown that exposure to predators

increases risky behaviours in a range of fishes [22–24].

Hence, we would predict the opposite effect if premigration

mortality rates differed between treatment groups. Recent

studies have explored the importance of predation as a domi-

nant force in the evolution of seasonal migration across a

range of taxa, including mammals, birds and fish [14,25,26].

Altered migration tactics in both geese and wader bird species

have been hypothesized to occur in response to the recovery of

avian predators [27,28]. Contemporary studies have also

demonstrated that migration confers survival benefits with

respect to predation in ungulates and fish, and artic ground-

nesting shorebirds can decrease nest predation by migrating

further north [15,25,26]. However, to our knowledge, no studies

have hitherto used an experimental approach to investigate

how changes in perceived predation risk influences seasonal

migratory propensity in the wild, providing mechanistic links

between predation risk and migration.

Our data suggest that predators can impact the migratory

dynamics of animals, with potential strong ecosystem conse-

quences [3,29]. Understanding changes in migratory behaviour

in response to altered landscapes of predation risk is hereby

particularly important, given recent losses in apex preda-

tors across the globe via changes in climate, harvesting and

pollution [30,31].
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