Predicting the impacts of climate change on British bird and hoverfly distributions.

Tim Newbold¹, Francis Gilbert¹, Tom Reader¹, Stuart Ball², Simon Gillings³, Chris Du Feu, Jennifer Owen

¹Nottingham University, ²JNCC, ³BTO

Outline

- Climate change and biodiversity
- Species distribution models
- Testing models using time series data
- Implications for biodiversity research and conservation
- Future directions

Climate Change is Already Affecting Species

- Distributions shifting northwards and upwards
- Spring events earlier
- Population dynamics changes
- Community
 composition changes

Climate Change is Already Affecting Species

- Distributions shifting northwards and upwards
- Spring events earlier
- Population dynamics changes
- Community
 composition changes

- Can predict future distributions
- Model coefficients applied to predicted future climates
- Previous studies predicted large shifts and alarming extinction rates

- Difficult to assess accuracy because changes haven't happened
- Solution: Predict changes that have happened

Data

- 30-year time series (1972-2002):
 - British hoverflies (n = 256) and birds (n = 32)
 - Nationwide occurrence
 - Single-point abundance
 - Divided into five or six-year periods
 - Climate data (UKCIP)
 - Habitat data (ITE land cover)
 - Agricultural data (Edina censuses)

Data

Data

- 30-year time series (1972-2002):
 - British hoverflies (n = 256) and birds (n = 32)
 - Nationwide occurrence
 - Single-point abundance
 - Climate data (UKCIP)
 - Habitat data (ITE land cover)
 - Agricultural data (Edina censuses)
 - Divided into five or six-year periods

The Models

The Models

Testing the Models

- Against nationwide occurrence:
 - AUC statistic
- Against single-site abundance:
 - Related abundance to model probabilities using a GLM with negative binomial errors (slope & AIC)

Testing Against Nationwide Occurrence Data

Wilcoxon matched-pairs statistic always >2.3 (p < 0.05) and usually >3.4 (p < 0.001)

Testing Against Single-Site Abundance Data

In all but 2 cases, slope coeff. greater than for control models and in all but 2 cases AIC less for control models

A Northward Shift?

Reasons for Model Failure

- Lags dispersal limitation
- Adaptation (~30 generations?)
- Phenotypic plasticity Charmantier et al. (2008)
- Interactions not captured
- Population trends (but models didn't predict abundance well)

Implications

- Similar models are often used to predict effects of climate change
- Resulting conservation decisions could be inappropriate
- Most studies only test initial models
- These were highly accurate

The Future

- Testing lags in species'
 response
- Are species moving upwards (higher altitude) rather than northwards?
- More studies of adaptations
- How can we quantify species interactions?

Acknowledgements

- My collaborators
 - Tom Reader
 - Francis Gilbert
 - Stuart Ball
 - Simon Gillings
 - Jenny Owen
 - Chris du Feu
- Behavioural Ecology Group, Nottingham, especially:
 - Andrew MacColl
- NERC

