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Species Distribution Models
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Applications

|dentifying biodiversity hotspots
Evaluating protected areas

Finding new populations of rare species
|dentifying sites for reintroductions
Predicting impacts of climate change




Species Richness Patterns

 Many studies have
investigated correlates
of species richness

* E.g. Butterflies in
Finland - kivinen et al. (2007)




Distribution Models and
Richness

* Few attempts to use
SDMs to predict
richness

* Mexican reptiles and
amphibians - Garcia (2006)

» Comparison of
methods




Egyptian Mammals and
Butterflies

 Butterflies — 2
endemics, 2 near-
endemics

e Mammals — 4
endemics, 10 near-
endemics




Methods of Predicting Richness

 Compared 2 methods

» Generating distribution models and
summing them

* Modelling richness patterns directly
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Environmental Variables

* Climate
* Principal Components Analysis = 4 PCs
* Habitat




Distribution Model




Variable Importance
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Modelling Richness Directly

* Species richness
calculated for sampled
0.5° cells

* Modelled using GLM with
Poisson errors

e Same variables as
before




GLM Results

Deviance Explained

Term .
Butterflies Mammals

PC 1 Max. Temp. 2.18 5.52
(PC 1)2 & Rain 1.24 1.4
PCA?2 Min. NS NS
(PC 2)? Temp. NS 0.36

PC 3 Altitude NS 4.99
(PC 3)2 & Rain NS

PC4 , NS

Seasonality
(PC 4)?
Habitat
Total




GLM Results

Deviance Explained

Term

Butterflies Mammals

PC 1 Max. Temp.
(PC 1)2 & Rain

PCA?2 Min.
(PC 2)? Temp.
PC 3 Altitude
(PC 3)2 & Rain

PC 4
(PC 4)?
Habitat

Total

Seasonality




Species Richness Model




Agreement with Observed
Richness

a Mammals
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Butterflies - r, = 0.456, N = 357, p < 0.001
Mammals - r, = 0.586, N = 362, p < 0.001




Agreement with Observed
Richness

a Mammals
x Butterflies
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Butterflies - r, = 0.226, N = 357, p < 0.001
Mammals - r, = 0.534, N = 362, p < 0.001




Agreement Between Methods

& Mammals
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Butterflies - r, = 0.501, N = 357, p < 0.001
Mammals - r, = 0.653, N = 357, p < 0.001




Egypt's Protected Areas

2 protected areas
Gazetted since 1983

Some knowledge of
diversity patterns

Cover 11% of land
surface

Do they represent
diversity well?




Protected Areas

12

N
o
1

A Mammals
X Butterflies

(o)}
1

£
=
(7p)
O
©
o
=
c 8
)
i
=
o)
=
e
12
(]

N
1

X

1
"
0
@
c
c
Ig
14
"
2
o
@
Q
7))
O
]
wid
Ig
O
o
|
o

Protected Unprotected

Butterflies - Mann-Whitney test: U = 67976, N = 1983, p < 0.001
Mammals - Mann-Whitney test: U = 71849, N = 1983, p < 0.001




Protected Areas

A Mammals
X Butterflies
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Butterflies - Mann-Whitney test: U = 5500, N = 298, p = 0.009
Mammals - Mann-Whitney test: U = 67381, N = 1143, p = 0.006




Conclusions

Neither method matched observed
species richness perfectly

Many factors not captured e.g. species
Interactions, soils, microclimate, dispersal
history

2 methods produced similar results

Model of richness useful when species
identity unknown e.g. richness estimators

Protected areas represent richness well




Climate Change is Already
Affecting Species
Distributions shifting

northwards and
upwards

Spring events earlier

Population dynamics
changes

Community
composition changes
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Species Distribution Models

« (Can predict future distributions
* Model coefficients applied to predicted future climates

* Previous studies predicted large shifts and alarming
extinction rates
(a) Trailing azalea
Current moderate extreme
'_' scenario '_' scenario l‘

Berry et al. (2002)"




Species Distribution Models

Thomas et al. (2004)
Used distribution models
Several taxonomic groups

Different regions
worldwide

15-37% of species
“‘committed to extinction”




ecies Distribution Models

Catherine BenneltinG2 -+ NG2: s G2 PusOnine&jobs

= T/oeGuardlan

An unnatural disaster

" Under threat

@ Third of lifeforms
doomed by 205¢

Paul Brown




Species Distribution Models

* Difficult to assess accuracy because
changes haven't happened

» Solution: Predict changes that have
happened




Data

» 30-year time series (1972-2002):
— British hoverflies (n = 256) and birds (n = 32)
— Nationwide occurrence
— Single-point abundance
— Climate data (UKCIP)
— Habitat data (ITE land cover)
— Agricultural data (Edina censuses)
— Divided into five or six-year periods
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Data
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The Models
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Testing the Models

» Against nationwide occurrence:
— AUC statistic

Perfect Model
AUC=1

Random
Model
AUC =0.5

Area under the
Curve (AUC)
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Testing the Models

» Against single-site abundance:

— Related abundance to model probabilities
using a GLM with negative binomial errors
(slope & AIC)
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Testing Against Nationwide
Occurrence Data

Model type
$ Initial

QO Change
/\ Control
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1972-1977 1978-1982 1983-1987 1988-1992 1993-1997 1998-2002 |1968-1971 1988-1991

Time period for which prediction was made
Wilcoxon matched-pairs statistic always >2.3 (p < 0.05) and usually >3.4 (p < 0.001)




Testing Against Single-Site
Abundance Data
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neriod for which
In all but 2 cases, slope coeff. greater than for control models and in all but 2 cases
AIC less for control models




A Northward Shift?

—— Latitude Centroid -
Predicted

-=— | atitude Centroid -
Actual

Time Periods
1 1972-1977
2 1978-1982
3 1983-1987
4 1988-1991
5 1992-1997
6 1998-2002
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climate
» Getting better all the

study

time
* Not an issue In our

* Predictions of future




Dispersal Limitation

Can species move
fast enough?

Svenning et al.
(2008)

Plants still not at
equilibrium after
post-glacial
expansion




Interactions Among Species

« Known to be
important for current
distributions

* E.g. butterflies and

host plants Araujo &
Luoto (2007)

 Not considered In
climate change
models




Adaptation

* Evolutionary
adaptation (~30
generations?)

* Phenotypic plasticity
 E.g. great tits in
Wytham woods

Charmantier et al. (2008)




Changes in Population Trends

e Some evidence for

rare birds Iin Britain
Green et al. (2008)

* But poor relation to
abundance here

» Sites at range
boundaries




Conclusions

* Models captured current distributions very
well

» But failed to predict ‘future’ distributions
accounting for climate change

» Very important given the popularity of
these methods
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