The Value of Species Distribution Models for Conservation

Tim Newbold, Tom Reader & Francis Gilbert

Outline

Species distribution mq

Species richness patte

Protected areas and sp

Climate change and SI

Data on where the species is known to occur

+ Data on the environment at these locations

A model to relate them – what does the species require? Produce a map of predicted distribution

Applications

- Identifying biodiversity hotspots
- Evaluating protected areas
- Finding new populations of rare species
- Identifying sites for reintroductions
- Predicting impacts of climate change

Species Richness Patterns

- Many studies have investigated correlates of species richness
- E.g. Butterflies in Finland Kivinen et al. (2007)

Distribution Models and Richness

- Few attempts to use SDMs to predict richness
- Mexican reptiles and amphibians - Garcia (2006)
- Comparison of methods

Egyptian Mammals and Butterflies

- Butterflies 2
 endemics, 2 near endemics
- Mammals 4
 endemics, 10 near endemics

Methods of Predicting Richness

- Compared 2 methods
- Generating distribution models and summing them
- Modelling richness patterns directly

Data & Protected Areas

Species Records

Environmental Variables

- Climate
- Principal Components Analysis → 4 PCs
- Habitat

Distribution Model

Variable Importance

Distribution Model Sum

Distribution Model Sum

Modelling Richness Directly

- Species richness calculated for sampled 0.5° cells
- Modelled using GLM with Poisson errors
- Same variables as before

GLM Results

Term		Deviance Explained	
		Butterflies	Mammals
PC 1	Max. Temp.	2.18	5.52
(PC 1) ²	& Rain	1.24	1.4
PCA 2	Min.	NS	NS
(PC 2) ²	Temp.	NS	0.36
PC 3	Altitude	NS	4.99
(PC 3) ²	& Rain	1.67	NS
PC 4	Seasonality	0.59	NS
(PC 4) ²		2.36	0.35
Habitat		1.35	5.37
Total		10.04	20.29

GLM Results

Term		Deviance Explained	
		Butterflies	Mammals
PC 1	Max. Temp.	2.18	5.52
(PC 1) ²	& Rain	1.24	1.4
PCA 2	Min.	NS	NS
(PC 2) ²	Temp.	NS	0.36
PC 3	Altitude	NS	4.99
(PC 3) ²	& Rain	1.67	NS
PC 4	Seasonality	0.59	NS
(PC 4) ²		2.36	0.35
Habitat		1.35	5.37
Total		10.04	20.29

Species Richness Model

Agreement with Observed Richness

Butterflies - r_s = 0.456, N = 357, p < 0.001 Mammals - r_s = 0.586, N = 362, p < 0.001

Agreement with Observed Richness

Butterflies - r_s = 0.226, N = 357, p < 0.001 Mammals - r_s = 0.534, N = 362, p < 0.001

Agreement Between Methods

Butterflies - r_s = 0.501, N = 357, p < 0.001 Mammals - r_s = 0.653, N = 357, p < 0.001

Egypt's Protected Areas

- 27 protected areas
- Gazetted since 1983
- Some knowledge of diversity patterns
- Cover 11% of land surface
- Do they represent diversity well?

Protected Areas

Butterflies - Mann-Whitney test: U = 67976, N = 1983, p < 0.001 Mammals - Mann-Whitney test: U = 71849, N = 1983, p < 0.001

Protected Areas

Butterflies - Mann-Whitney test: U = 5500, N = 298, p = 0.009 Mammals - Mann-Whitney test: U = 67381, N = 1143, p = 0.006

Conclusions

- Neither method matched observed species richness perfectly
- Many factors not captured e.g. species interactions, soils, microclimate, dispersal history
- 2 methods produced similar results
- Model of richness useful when species identity unknown e.g. richness estimators
- Protected areas represent richness well

Climate Change is Already Affecting Species

- Distributions shifting northwards and upwards
- Spring events earlier
- Population dynamics changes
- Community composition changes

Climate Change is Already Affecting Species

- Distributions shifting northwards and upwards
- Spring events earlier
- Population dynamics changes
- Community composition changes

- Can predict future distributions
- Model coefficients applied to predicted future climates
- Previous studies predicted large shifts and alarming extinction rates

- Thomas et al. (2004)
- Used distribution models
- Several taxonomic groups
- Different regions worldwide
- 15-37% of species
 "committed to extinction"

 Difficult to assess accuracy because changes haven't happened

Solution: Predict changes that have

happened

Data

- 30-year time series (1972-2002):
 - British hoverflies (n = 256) and birds (n = 32)
 - Nationwide occurrence
 - Single-point abundance
 - Climate data (UKCIP)
 - Habitat data (ITE land cover)
 - Agricultural data (Edina censuses)
 - Divided into five or six-year periods

Data

Data

- 30-year time series (1972-2002):
 - British hoverflies (n = 256) and birds (n = 32)
 - Nationwide occurrence
 - Single-point abundance
 - Climate data (UKCIP)
 - Habitat data (ITE land cover)
 - Agricultural data (Edina censuses)
 - Divided into five or six-year periods

The Models

The Models

Testing the Models

- Against nationwide occurrence:
 - AUC statistic

Testing the Models

- Against single-site abundance:
 - Related abundance to model probabilities using a GLM with negative binomial errors (slope & AIC)

Testing Against Nationwide Occurrence Data

Wilcoxon matched-pairs statistic always >2.3 (p < 0.05) and usually >3.4 (p < 0.001)

Testing Against Single-Site Abundance Data

In all but 2 cases, slope coeff. greater than for control models and in all but 2 cases AIC less for control models

A Northward Shift?

Uncertainties

- Predictions of future climate
- Getting better all the time
- Not an issue in our study

Dispersal Limitation

- Can species move fast enough?
- Svenning et al. (2008)
- Plants still not at equilibrium after post-glacial expansion

Interactions Among Species

- Known to be important for current distributions
- E.g. butterflies and host plants Araujo & Luoto (2007)
- Not considered in climate change models

Adaptation

- Evolutionary adaptation (~30 generations?)
- Phenotypic plasticity
- E.g. great tits in Wytham woods Charmantier et al. (2008)

Changes in Population Trends

- Some evidence for rare birds in Britain Green et al. (2008)
- But poor relation to abundance here
- Sites at range boundaries

Conclusions

- Models captured current distributions very well
- But failed to predict 'future' distributions accounting for climate change
- Very important given the popularity of these methods

Acknowledgements

- My collaborators
 - Tom Reader
 - Francis Gilbert
 - Stuart Ball
 - Simon Gillings
 - Jenny Owen
 - Chris du Feu
 - Ahmed El Gabass
 - Samy Zalat
- Behavioural Ecology Group
- NERC

