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Abstract We isolated and characterized Eastern spiny

mouse, Acomys dimidiatus microsatellite loci. A microsat-

ellite-enriched library was created and A. dimidiatus frag-

ments sequenced using 454 sequencing. In total, 1,221

primer-designable microsatellite sequences were identified.

We designed primer sets for 20 loci. Loci were characterized

in A. dimidiatus individuals from a semi-isolated desert wadi

(valley) in St. Katherine Protectorate, Egypt. After initial

trails, 18 microsatellite loci were genotyped in 67 mice. The

number of alleles displayed in the 18 markers ranged from

three to nine (mean = 6) with mean expected and observed

heterozygosities of 0.63 and 0.65, respectively. All 18

selected loci were in Hardy–Weinberg equilibrium

(P [ 0.01). These markers will be used to investigate the

fine-scale spatial patterns of genetic diversity and divergence

of A. dimidiatus populations. The isolated loci are of

potential utility in other murines, including 260 threatened

species.

Keywords Eastern spiny mouse � Pyrosequencing �
Microsatellite markers � Muridae �
Rodent Simple sequence repeats (SSRs)

The Eastern spiny mouse, Acomys dimidiatus (Rodentia:

Muridae), inhabits adjacent desert wadis (valleys) in

St. Katherine Protectorate, Sinai, Egypt but populations

differ in parasite burdens (Behnke et al. 2004). The markers

we report here will be used to study the fine-scale spatial

genetic structure of Eastern spiny mouse populations and

how heterozygosity influences host susceptibility to infec-

tion. The large number of A. dimidiatus microsatellite

sequences isolated are likely to be of utility in other species

of the same genus such as the endemic Acomys minous (Bates

1994). Additionally, by aligning the sequences with their

homologues in the house mouse Mus mus genome (following

the approach of Dawson et al. 2010), markers can be created

with enhanced cross-species utility, so enabling studies of

conservation genetics in Muridae more broadly, 36 % of

which are threatened species (&260 species; Myers et al.

2006).

A microsatellite-enriched library was constructed from a

male spiny mouse (ID: 8183) from Wadi Tlah, St. Katherine

Protectorate, Egypt. Genomic DNA was extracted from the

mouse tail using an ammonium acetate precipitation method

(Nicholls et al. 2000) and the library was made using the
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enrichment approach of Armour et al. (1994). The library

was enriched for the following di- and tetranucleotide

microsatellite motifs and their complements separately:

(AC)n, (AG)n, and (GATA)n, (TTTC)n, (GTAA)n, and

(CTAA)n, which had been denatured and bound to magnetic

beads following Glenn and Schable (2005). Following

enrichment, the dinucelotide- and tetranucleotide-enriched

fragments were PCR amplified separately, in three separate

reactions for each, to obtain sufficient DNA (ca 5 lg)

for sequencing. Each 25 ll PCR contained 2.0 ll dinucleo-

tide- or tetranucleotide-enriched DNA, 19 reaction buffer

(Bioline), 25 lg/ml BSA, 150 lM dNTPs, 0.5 lM Sau-L-

A linker/primer (Royle et al. 1992), 2.0 mM MgCl2 and 1

unit of DNA Taq polymerase (Bioline). The PCR pro-

gram used was as in Glenn and Schable (2005). The three

dinucleotide and three tetranucleotide PCRs were

pooled together. The resultant mixed dinucleotide/tetra-

nucleotide-enriched DNA was purified using a QIAquick

PCR purification column (Qiagen) and eluted in 40 ll to

create a concentration of ca 125 ng/ll. DNA concentration

was measured on the Nanodrop 8000 (Thermo Scientific).

The pooled PCR-amplified enriched fragments were

sequenced without shearing by 454 GS FLX. Six different

enriched libraries (6 species) were tagged and sequenced

together on a quarter of a plate.

A total of 14,585 sequences was obtained from 454

sequencing. Data were cleaned and assembled using Seq-

man NGen 2.0.0 (DNASTAR, Inc); for parameter settings

see Table 1. Microsatellite repeats were detected using a

modified version of SPUTNIK (http://wheat.pw.usda.gov/

ITMI/EST-SSR/LaRota (again, see Table 1 for parameter

settings)A total of 933 singletons and 288 contigs remained

that each contained a microsatellite of at least ten repeat

units and had sufficient suitable flanking sequence to allow

primers to be designed to amplify the repeat region. The

288 contigs were submitted to the EMBL database (EMBL

accession numbers HE994150–HE994159 and HE994162–

HE994439). We used Primer3 (Rozen and Skaletsky 2000)

to design primer sets from 20 unique sequences

(Adim0001–Adim020; Table 2). The primer design criteria

Table 1 Summary of Eastern spiny mouse Acomys dimidiatus microsatellite marker isolation

Singleton Contig Total

Number of 454 sequences obtained. (Six different enriched libraries

(6 species) were tagged and sequenced together on a quarter of a plate)

– – 14,585

Number of sequences remaining after the removal of the Sau-LA/B linker

sequences (Royle et al. 1992) and poly-A tails. Seqman NGen 2.0.0.

parameters: MerLength = 5; minMerMatch = 3; MinTrimLength = 15

– – 14,206 (97.4 %)

Number of sequences assembled in contigs or remaining unassembled as

singletons using SeqMan NGen v1.2 (DNAStar, Inc); assembly criteria

included minimum overlap match of 81 bases and 90 % similarity for

assignment into contigs (with a minimum of two sequences aligned

per contig). The minAveLowQual parameter was set to 14

9,576 (67.4 %) 4,630 reads assembled into

1,676 contigs, (32.6 %)

14,206

Number of sequences remaining after Sputnik software was used to

search for microsatellites). Sputnik parameter settings were sputnik –u 2 –v

5 –s 20 –p –L 20 –F infile.fas [ outfile.fas Sequences with a repeat purity

of at least

90 % were retained

4,408 (46.0 %) 1,676 (32.2 %) 6,084 (42.8 %)

Number of sequences remaining after removing sequences with a flanking

region of 20 base-pairs or less on both sides flanking the repeat region,

which we

deemed not primer designable

933 (21.2 %) 288 (17.2 %) 1,221 (20.1 %)

Number of primer sets designed 10 10 20

Number of primer sets amplifying 9 10 19

Number of primer sets polymorphic 9 10 19

Number of primer sets deviating from Hardy–Weinberg equilibrium 1 0 1

Number of primer sets deemed suitable for use in population structure

and parentage studies

8a 10 18

a After preliminary genotyping of 24 individuals, two loci, whose primer sets were designed from singleton sequences, Adim019 and Adim020
(EMBL accession numbers: HE994160 and HE994161) were excluded from further use. Adim019 displayed the same two alleles in all

individuals (hence deviating from Hardy–Weinberg equilibrium) and Adim020 did not amplify a product

The primer set for Adim019: (F): [6-FAM]GCATATGGGCAGCATTAAGTAG & (R): TTTCACACGACGGTATTTCC The primer set for

Adim020: (F): [6-FAM]AAGGCTTGGCCAGTATTAAGC & (R): TGGACAAGCTCCAATCAATG Details of the remaining 18 validated

markers are provided in Table 2
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used included a maximum 0.5 �C difference between the

forward and reverse primers, possession of a G/C clamp

and a maximum of three consecutive mononucleotide

bases.

Loci were initially genotyped in 24 individuals also

sampled from Wadi Tlah. For amplification, each reaction

contained 1 ll air-dried DNA at &10 ng/ll, 1 ll of primer

mix (fluorescently labelled forward and reverse) at 0.2 lM

and 1 ll QIAGEN multiplex PCR mix (QIAGEN Inc). The

PCR program used consisted of an initial denaturation at

95 �C for 15 min, followed by 35 cycles of 30 s at 94 �C,

90 s at 57 �C, and 60 s at 72 �C, followed by a final exten-

sion at 60 �C for 30 min. PCR products were diluted 1:358

with double-deionized H2O before resolving them in an ABI

3730 48-well capillary DNA Analyser (Applied Biosystems,

California, USA). Allele scoring was performed using

GeneMapper v3.7 (Applied Biosystems, California, USA).

Finally, all individuals possessing alleles differing by one

base-pair at a locus were genotyped at least twice, along with

additional control individuals to check for allele sizing

errors. Observed and expected heterozygosities were cal-

culated and null allele frequencies estimated using CERVUS

v3.0.3 software (Kalinowski et al. 2007), and deviation from

the Hardy–Weinberg equilibrium (HWE) and linkage

disequilibrium were assessed with GENEPOP v4.0.10

(Raymond and Rousset 1995; Rousset 2008). Markers

amplifying a product of the expected size, which were

polymorphic and adhered to HWE, were used to genotype

additional mice from the same population, totalling 67

individuals.

After preliminary genotyping of 24 individuals, two loci

that were both developed from singletons, Adim019 and

Adim020 (Table 1), were excluded from further use, as the

former displayed the same two alleles in all individuals and

the latter did not amplify. The remaining 18 loci (Adim0001–

Adim018) possessed three to nine alleles (mean = 6) in 67

individuals (Table 2). The allele sizes amplified for each

locus matched those expected based on the individual that

was cloned and sequenced (± 2 bp), except for Adim006 and

Adim014 (14 and 101 bp smaller than expected respectively;

Table 2). All loci had very low estimated null allele fre-

quencies (below 10 %) and were in HWE (P [ 0.01;

Table 2). Observed heterozygosities ranged from 0.24 to

0.83 (Table 2). Deviation from linkage equilibrium was

detected between two pairs of loci: Adim007–Adim015

(P \ 0.001), and Adim005–Adim011 (P = 0.006). How-

ever, neither pair displayed linkage disequilibrium in a dif-

ferent population (P [ 0.05; 57 individuals typed; data not

shown).

A higher number of validated markers was obtained

from contig sequences than singletons (100 vs. 80 %;

Table 1). However, the difference in success was rela-

tively low and only ten primer sets of each category were

tested; therefore, singleton sequences should not be dis-

carded or overlooked. Many (more) primer-designable

microsatellite sequences were obtained from singleton

sequences compared to contigs (933 vs. 288), and these

may be especially useful for obtaining higher genome

coverage or identifying markers in a region of specific

interest. We therefore provide the uncharacterized single-

ton microsatellite sequences as supplementary information

(Supplementary Table 1).
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