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Concerns about the impacts of climate change loom large among biodiversity scientists. A pressing issue
is the role of Protected Area networks under future climate change, because of the shifting of species dis-
tributions polewards due to climate warming. In this study we use two techniques in conservation sci-
ence, first, to estimate the likely impacts on the distributions of mammals and butterflies in Egypt
(MaxEnt), and second, to measure the effectiveness of Egypt’s Protected Area network (Zonation). We
predict that future climate will have significant effects on species richness and the relative value for con-
servation of sites in Egypt: some areas will increase in species richness, whilst others will decrease sig-
nificantly. Currently, the sites of highest relative conservation value are found in the Nile Delta, south-
eastern and Sinai regions of Egypt and along the Mediterranean and Red Sea coastlines, with Protected
Areas having a higher conservation value than unprotected areas. Under future climate scenarios the rel-
ative conservation value of Protected Areas are predicted initially to decline and then gradually increase
by the 2080s. It is predicted that many areas, especially the Nile Delta and the southeast, will require
extra protection in the future; areas that are currently not protected, but have high species richness
and conservation value, may need to be protected to prevent loss of biodiversity.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent climate warming is thought to be affecting greatly the
distribution of species globally (Parmesan and Yohe, 2003; Dawson
et al., 2011), causing great concern to conservation biologists be-
cause of the effects on biodiversity (Brooks et al., 2006). Species
distributions may change even more dramatically under future cli-
mate change scenarios, as many physiological and ecological pro-
cesses will be affected (Hansen et al., 2006). One of the impacts
of global climate change is to alter the effectiveness of Protected
Areas, i.e. how well they can support species in the future. A new
framework for conservation, that accounts for species distribution
shifts in response to climate change, is required to be able to adapt
and allocate financial resources efficiently (Hannah, 2010).

Species could adapt their niche and hence remain where they
are, or they could move, maintaining their niche (Wiens et al.,
2010): the main biological signals of climate warming reported
in the literature have been phenological changes and polewards
shifts in distribution (Parmesan, 2006; Root et al., 2003). Lack of
connected habitat patches, exacerbated by human habitat destruc-
tion, prevents some species from moving (Honnay et al., 2002).
Distributional shifts of some species will certainly change the dis-
tribution of biodiversity (Menendez et al., 2007) and cause a de-
cline in species richness of particular places (Hannah, 2008),
including reserves as some species shift to non-reserve areas (Ara-
ujo et al., 2004). These losses may be partially offset as new species
invade from habitats outside Protected Areas (Hartley and Jones,
2003). Therefore it is unclear whether Protected Areas will lose
species or not under future climate warming (Hole et al., 2009;
Araujo et al., 2011), but those that encompass greater latitudinal
and altitudinal variation may be better able to retain species under
future climate warming (Hannah, 2008).

The global network of Protected Areas has continued to grow
steadily since 1992, increasing by an average of 2.5% in total area
per year (Butchart et al., 2010). Currently Protected Areas occupy
almost 17 million km2 worldwide (�19% of global land area), but
only �5.8% is strictly protected for biodiversity (Jenkins and Joppa,
2009). Global estimates suggest that Protected Areas do not over-
lap the most biodiverse areas (Chape et al., 2005) and climate
change could compromise their ability to do this even more (Car-
roll, 2010). It is important, therefore, to be able to assess the likely
effectiveness of a Protected Area network under future scenarios of
climate change.

A fairly recent technique devised for just this purpose uses a
combination of species distribution modelling and reserve-selec-
tion algorithms such as Zonation (Hannah, 2008, 2010; Carroll,
2010; Klorvuttimontara et al., 2011). This combination allows for
the analysis of large data sets in a reasonable time and may provide
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the best solution for assessing the conservation value of Protected
Area networks. Species distribution modelling is one of many meth-
ods used to quantify patterns of species distributions and to extrap-
olate distributions across space and time (Elith and Leathwick,
2007; Franklin, 2009), usually based on a statistical model (Frank-
lin, 2009). This is done by combining species occurrences at known
locations with layers of environmental variables thought to have an
influence on habitat suitability (and so species distribution) to
make a model of the environmental conditions that meet the eco-
logical requirements of a species, thus identifying where these suit-
able conditions are distributed in space (Guisan and Thuiller, 2005;
Phillips et al., 2006; Pearson, 2007; Elith & Leathwick, 2009; Frank-
lin, 2009; Warren and Seifert, 2011). The output of most models
aims to provide detailed predicted distribution maps (Elith et al.,
2006). Once built, such models can be used to supply projections
of potential habitat, which can be used as a surrogate for biodiver-
sity maps, and in areas with poor species data they can predict the
distribution of species under different environmental conditions
(for example, future climate change) and inform conservation man-
agement (Wintle et al., 2005). Species distribution models assume
that distributions are caused by environmental tolerances, i.e. the
Grinellian or fundamental niche. The responses of species to these
niches are then estimated, assuming these will not change under
future climate: species will move rather than adapt (Wiens et al.,
2010). It has the potential to include species interactions (Kissling
et al., 2011), but these are hard to incorporate into an analysis of
an entire fauna without solid a priori bases for including particular
interactions for each species (McMahon et al., 2011). There are a
range of methods available, but here we used MaxEnt (Phillips
et al., 2006), based on the probability distribution of maximum en-
tropy, subject to environmental variables (Elith et al., 2006, 2011).

Spatial conservation prioritisation techniques use spatial data,
such as species distribution and land cover, to analyse and prioritise
areas that require conservation (Kremen et al., 2008). ‘Zonation’ is an
implementation of spatial conservation prioritisation able to exam-
ine the effectiveness of Protected Areas (Moilanen et al., 2005). Re-
cent studies have used it to prioritise areas for conservation in
many different countries: to increase the reserve network for lemurs
in Madagascar (Kremen et al., 2008; Fiorella et al., 2010), in the de-
sign of marine (Leathwick et al., 2008) and riverine Protected Areas
(Leathwick et al., 2008, 2010) and for forest conservation in Finland
(Lehtomaki et al., 2009) and the USA (Carroll, 2010).

We apply these techniques here to Egypt, which has 29 Pro-
tected Areas covering 15% of its land surface (EEAA, 2010), and
one more small one recently declared on the southern border with
Sudan. All of these have been gazetted since 1983, and show very
good coverage of biodiversity compared to Protected Area net-
works in other countries (Newbold et al., 2009). The effect of cli-
mate change on species distributions in Egypt has never been
studied, and neither has the efficiency of the Protected Area net-
work to conserve biodiversity in the advent of climate change.
The datasets for Egyptian mammal and butterfly species are large
and complete enough, so both of these taxa were chosen to be used
in our models. Egyptian mammal and butterfly species have higher
species richness inside the network than outside, and at present
the network seems to contain a fair representation of Egypt’s mam-
mal and butterfly diversity (Newbold et al., 2009). We address
whether future climate change may affect the ability of the net-
work to represent biodiversity successfully.

2. Materials and methods

2.1. Species and climate data

We took advantage of the fact that occurrence data for many
taxa from Egypt have been collated, taxonomically checked and
updated, assessed and georeferenced as part of the BioMAP project
(2004–2008), which aimed to develop and strengthen biodiversity
research across Egypt (see http://www.biomapegypt.org). The
mammal dataset consists of 4533 verified records for 60 species,
taken from museum and personal records, unpublished reports
and the published literature (Basuony et al., 2010), nearly all re-
corded between 1900 and 2007: coverage is good (Appendix –
Document 1 – Fig. A1) considering that most of Egypt is arid inac-
cessible desert. The butterfly dataset contains 1729 records, nearly
all recorded between 1900 and 2006, for 36 species, mostly taken
from museum specimens and the sparse literature on Egyptian
butterflies (Larsen, 1990; Gilbert and Zalat, 2008). The coverage
of Egypt is patchy (as might be expected for butterflies in the most
arid country in the world), but fairly representative (Appendix –
Document 1 – Fig. A1). All specimens in Egyptian collections were
re-identified according to the latest taxonomic opinion; Larsen
(1990) had already reviewed and checked most other records.
The precision of the locality information was assessed and records
rejected that were too imprecise to be mapped. Given that nearly
all the records were collected before the era of GPS units, and that
Egyptian data are not so numerous, we could not afford to be too
highly selective; we accepted all mappable records as potentially
usable where the majority were post-1900 (see below). There is
bias in the data in that records were inevitably made in accessible
rather than inaccessible locations, a notable problem in a country
such as Egypt, where for most of the 20th century roads were lar-
gely limited to the Nile Valley and Delta, and the northern coast. As
for most countries in the world, we were unable to assess or allow
for such biases in the analyses: they probably do affect interpreta-
tion of the static pattern (cf. Basuony et al., 2010) but changes with
time should be less affected.

Although desirable, we were unable to include the possibility
that species from outside Egypt might invade under climate
change scenarios, simply because the distribution data do not exist
for surrounding countries, particularly Sudan to the south, from
where such species might reasonably derive. This limits the inter-
pretation of our results to the current species recorded from Egypt.

Egypt is the most arid country in the world (FAO, 2012), with
mean annual rainfall in most of the southern regions of less than
2 mm per year, reaching 100–200 mm per year on a narrow strip
of the Mediterranean coast and in the Sinai mountains. Mean an-
nual maximum temperatures range from 20 to 35 �C, with the
average maximum July temperatures in the south approaching
50 �C. Mean annual minimum temperatures range from 10 to
19 �C, with average minimum January temperatures between zero
and 5 �C in the Sinai mountains (EMA, 1996).

Current monthly climate data at 2.5 arc-min resolution (pixel
size is approximately a square of side 4.6 km) describing precipita-
tion and temperature were obtained from the WorldClim version
1.4 dataset (Hijmans et al., 2005), derived from observed data col-
lected in the period 1950–2000. Current and future climate data
were downloaded in the form: tmin (average monthly minimum
temperature (�C)), tmax (average monthly maximum temperature
(�C)) and prec (average monthly precipitation (mm)). Future down-
scaled climate data for the same variables, based on the IPCC
Fourth Assessment Report, were obtained from the CIAT (Interna-
tional Centre for Tropical Agriculture) website (http://gisweb.ciat.
cgiar.org/GCMPage), again at 2.5 arc-min resolution. Climate data
was downloaded from three different climate models: HadCM3
(developed by the UK Met Office Hadley Centre), CSIRO MK2
(developed by the Australian CSIRO Climate Change Research Pro-
gramme) and NIES99 (developed by the Japanese National Institute
for Environmental Studies). The data were for three future time
periods (2020s, 2050s and 2080s) and for two emission scenarios
(A2 and B2) chosen because they represent ‘moderate’ (B2) and
‘large’ (A2) changes, and are thought to account for most of the
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Table 1
Settings used in different runs of Zonation. Four elements have options, and we
changed two of them among different runs (see text). The ‘aggregation method’
(chosen to be ‘distribution smoothing’) and the ‘warp factor’ (chosen to be 100) were
constant among runs: see text.

Run Cell removal rule Weighting of species

Run 1 Core area Zonation Distribution2 � IUCN
Run 2 Core area Zonation Distribution � IUCN
Run 3 Additive Benefit Function Distribution2 � IUCN
Run 4 Additive Benefit Function Distribution � IUCN
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likely variation in future greenhouse gas emissions (Beaumont
et al., 2008). The current and future climate data were then clipped
to the outline of Egypt using the Raster Calculator function in Arc-
Map 10.0 (ESRI, Inc.), and converted to a standard set of climate
predictors: the mean, maximum, minimum and standard deviation
were calculated for tmin and tmax, and the sum, maximum, mini-
mum and standard deviation were also calculated for prec. This
process created 12 new variables which were used as climate pre-
dictors: max tmin, max tmax, max prec, min tmin, min tmax, min
prec, std tmin, std tmax, std prec, sum prec, mean tmin, and mean
tmax.

2.2. Modelling species distributions in the current and future climate

Some authors (e.g. Araujo and New, 2007; Thuiller et al., 2009)
advocate using ensemble modelling for species distributions,
where the consensus view over a number of kinds of model is used
in order to incorporate modelling uncertainty. We did not use this
methodology because (a) we wanted to keep things as simple as
possible – the nature of the data is the main limiting issue in
data-poor countries such as Egypt; and (b) different models have
differing data requirements and hence ensemble modelling would
necessitate rejecting many more species than MaxEnt. We there-
fore used a single modelling method (MaxEnt: see Elith et al.,
2006, 2011) to keep the model type constant over all models. Max-
Ent is a robust and useful method, used extensively by researchers
in this field, although there are dissenters who believe it to be
inappropriate for a variety of reasons (e.g. Royle et al., 2012).

Our models assume that climate is the determinant of the dis-
tribution of the species. This is simplistic, but practical (McMahon
et al., 2011): the extent to which distributions are determined by
other factors, such as species interactions and abiotic factors (for
example land use or vegetation), is simply unknown. It might have
been feasible to search for such relationships among the data, but
in our opinion this was more likely to generate spurious than real
relationships. Almost nothing is known a priori about factors such
as interactions among Egyptian mammals. Although host-plants
are known for some Egyptian butterflies, we do not yet have the
data on plant distributions to be able to incorporate them as pos-
sible predictors. MaxEnt models for 10 Egyptian butterfly and 4
Egyptian mammal species (all used in this study) have been vali-
dated by collecting new information from the field in small surveys
(Newbold et al., 2010).

Using MaxEnt (version 3.3.3), species distribution models were
built with the climate variables for Egyptian mammal and butterfly
species, checked and validated elsewhere (Newbold et al., 2009,
2010). Only species with at least fifteen records of occurrence
and from precise locations were included in the modelling as this
is widely recommended as the best number to use (Papes and
Gaubert, 2007; Pearson et al., 2006). MaxEnt is designed for use
with datasets that contain presence-only data, and is therefore
one of the best techniques to use when a large majority of the data
comes from museum collections (Elith et al., 2006), as is the case in
this study. It is also known to be especially useful with low num-
bers of records (Elith et al., 2011), as with many of the rarer species
here: we used all available records for building each model. It is
certainly possible that the relatively low number of records for
many species affects the results, but averaging over many species
should mitigate the impact. In addition, species with more than
50% of their records dated before 1900 were excluded from the
models (see Appendix – Document 1 – Table A1). The years of all
mammal and butterfly species records can be found in Appendix
– Document 2 – Table A5 and Appendix – Document 3
– Table A6 respectively. Models were assessed using the usual
AUC criterion and any species with an AUC score lower than 0.7
were excluded from future models (see Appendix – Document 1
– Table A1). A score greater than 0.7 is thought by most researchers
in this field to represent an accurate model (Swets, 1988; Fielding
and Bell, 1997). The robustness of the models was also tested using
Kappa analysis in R (version 2.15.1), performed for the 60 mammal
and 35 butterfly species used in the analysis (see Appendix – Doc-
ument 1 – Table A1).

In total 60 terrestrial mammal (65% of the fauna) and 35 butter-
fly (56%) species were modelled. The following parameters were
used in MaxEnt: linear and quadratic feature types; maximum of
500 iterations; response curves; jackknife; and a 25% random test
percentage was used to determine background predictions for Kap-
pa values. MaxEnt predictions for current species’ distributions are
shown in Appendix – Document 4 – Table A7.
2.3. Spatial conservation prioritisation in current and future climate

The priority areas for conservation were identified using Zona-
tion software (Moilanen et al., 2005, 2009), which prioritises by
considering the landscape as a grid of cells. It repetitively removes
cells whose loss causes the least marginal loss in the overall ‘con-
servation value’ (see below) of the remaining landscape, resulting
in a rank order for all cells. The top-ranking cells after these pro-
cesses indicate areas of highest priority for conservation (Moilanen
et al., 2005).

The predicted distributions from MaxEnt in the form of raw val-
ues for each pixel, for 60 mammal species and 35 butterfly species
were used by Zonation (version 2.00) to prioritise areas for conser-
vation under current and future climates. There are four elements
of Zonation that require choices to be made, and we performed
four different runs using different assumptions (Table 1) for two
of the elements: the weighting of species and the cell removal rule
(which determines what ‘conservation value’ means). The other
two (the ‘warp factor’ and the connectivity of the habitat) were
chosen to be constant among runs.

When assigning weights to each individual species, we used
two equations: weight = distribution2 � IUCN (for runs 1 and 3)
and weight = distribution � IUCN (for runs 2 and 4). In these equa-
tions, ‘distribution’ is a score (between 1 and 5) derived from an
estimate of the degree to which Egypt is responsible for the world
population (see Table 2), and ‘IUCN’ is a codified version of the Red
List categories (see Table 2) (scored between 0 and 5). The result-
ing weights for each species are given in Appendix 1 – Document 1
– Table A2.

The cell removal rule (see Moilanen, 2007) determines how the
algorithm assesses ‘conservation value’ in order to rank the cells of
the landscape. We firstly used ‘Core-Area Zonation’ (runs 1 and 2),
where the conservation value of a cell is defined as the highest va-
lue for any one species of the equation Qw/c, where w is the species
weight, Q is the proportion of remaining distribution of the species
that the cell represents (based on probabilities of occurrence from
MaxEnt), and c is the cost of adding the cell to the reserve network
(a cost value was not used in this study). We then replaced this
with the ‘Additive Benefit Function’ (runs 3 and 4), which defines
conservation value as the sum of the values of the cell over all



Table 2
Coding for ‘distribution’ and ‘IUCN’ used in calculating the species weights for
different runs of Zonation (see methods). The categories were obtained for each
species from Basuony et al. (2010) (mammals) and Gilbert and Zalat (2008)
(butterflies). The resulting scores are provided in Appendix – Document 1 – Table A2.

Distribution Score IUCN category Score

Not assessed 0
Widespread 1 Least concern 1
Narrow 2 Data deficient 2
Restricted 3 Vulnerable 3
Near-endemic 4 Endangered 4
Endemic 5 Critically endangered 5
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species, thus giving more weight to areas of high species richness.
In this study species richness refers to the sum of the probabilities
of occurrence. The input parameter of the Additive Benefit Func-
tion determines the rate of loss of conservation value as area is re-
moved: we used a value of 0.25 for all species, because this value is
approximately the exponent of species–area relationships (Ferrier
et al., 2004).

Two elements were constant among runs. The warp factor is the
number of grid cells removed in each iteration; in this study we set
it to 100 as the best compromise between speed of run and repro-
ducibility of results. The other element constant among runs was
the connectivity of the habitat, set by choosing an aggregation
method. There are four types of aggregation method: ‘boundary
length penalty’, ‘distribution smoothing’, ‘boundary quality pen-
alty’ and ‘directed connectivity’. Which is appropriate depends on
the conservation target and computational issues, but their use
provides a relatively compact solution (Moilanen and Kujala,
2006). In this study we used distribution smoothing, which neces-
sitates the calculation of a parameter a by the following equation:
a = (2 ⁄ [cell size in km2])/([dispersal distance in km] ⁄ [input cell
size in km]). The input cell size was set as 0.0416 km (�0.0083�),
and the cell size to 4.6383 km (�2.5 arc-min resolution). The last
part of the equation (cell size (km2)/input cell size (km)) is needed
to ensure that the a value is in the same unit of length as the cell
size given in the species distribution ASCII file (Moilanen and Kuj-
ala, 2006). The dispersal distance was calculated differently for
mammals and butterflies. Butterflies were classified either as resi-
dent and/or migratory (Appendix – Document 1 – Table A2) (Gil-
bert and Zalat, 2008), so the dispersal distance was estimated as
dichotomous: 1 km for residents and 50 km for migratory species.
For mammals, an equation links dispersal distance to body size,
Log10 (dispersal distance in km) = �1 + (0.62 � Log10 (body size in
g)) (Bowman et al., 2002), and then the corresponding a values
were calculated. The parameters used in calculating a for each spe-
cies are given in Appendix – Document 1 – Table A3.

2.4. Interpretation and processing

Species Richness maps were created by summing all of the out-
put ASCII files for both mammals and butterflies. We did not con-
vert the MaxEnt raw output into ‘presence–absence’ using a
threshold rule, because (a) this involves an extra set of assump-
tions we did not want to make; and (b) an as-yet-unpublished par-
allel study of reptile diversity and climate change (El-Gabbas,
2012) showed no difference in the results of such a conversion.

To examine the conservation value of Protected Area networks
under current and future climate, grid cells were prioritised using
current and future distributions of mammals and butterflies. Zona-
tion ranks each cell from 0 (low) to 1 (high), and in this study we
designated cells with a score >0.7 as ‘high priority’, in order to ob-
serve what proportion of these high-priority grid cells are pro-
tected at any single time period. For each Zonation run and
climate model, we calculated the mean ranked score of cells and
number of high ranked cells contained within the current Pro-
tected Area network under current and future climate change sce-
narios. Egypt covers approximately 48,000 grid cells at 2.5 arc-min
resolution, of which about 8.0% are within the 27 Protected Areas
considered here (Appendix – Document 1 – Table A4): the newest
Protected Areas (El Gilf El Kebir, El Dababia and Gebel Kamel) were
not included in this analysis because they are little more than pa-
per parks at the moment. For each scenario (A2 and B2), the results
were then averaged across the three Global Circulation Models and
across all four runs of Zonation to produce mean ranked scores and
number of high-value grid cells within and outside PAs. We aver-
aged the results across all Global Circulation Models because there
were no major differences between individual models – the projec-
tions all resulted in approximately the same patterns. The output
maps from Zonation were also averaged per cell across all three
Global Circulation Models and all four runs of Zonation to produce
maps showing the ‘relative conservation value’ of grid cells in
Egypt for mammals and butterflies under current and future
climate.
3. Results

Mammals are predicted to change their distributions substan-
tially under future climates (Fig. 1a). Areas inland and in southern
Egypt are predicted to undergo declines of 4–6 species relative to
today, whereas areas in Northern Egypt are likely to increase by
approximately 5 species. Most of the predicted changes concern
rodents. There are also predicted to be changes in species richness
of butterflies, especially in the 2080s under the A2 scenario
(Fig. 1b). Large areas of Egypt are predicted to maintain low species
richness, with some areas inland and to the south seeing signifi-
cant decreases of 2–4 species, and Sinai a large decrease of 8–10
species. However, some areas, especially in the north, are predicted
to increase in species richness slightly (by 2–4 species). There are
slight differences between the A2 and B2 scenarios, but in general
the B2 scenarios just appear to be happening at a slower rate. We
are not expecting any species to become extinct over the next few
decades, but merely to change their distribution within Egypt.

Relative to the situation under the current climate, the mean
ranked score for mammal grid cells within Protected Areas across
Egypt is predicted initially to decrease under the A2 scenario for
the 2020s. The mean score decreases again slightly in the 2050s
and then increases in the 2080s. For butterflies the mean ranked
score within Protected Areas decreases in the 2020s, then increases
slightly in the 2050s and again in the 2080s (Fig. 2a). This pattern
of an initial decrease and then a gradual increase is also seen under
the B2 scenario (Fig. 2b). The standard errors are quite large for
mammals due to differences between the results of the Zonation
runs.

Relative to current climate, the number of high-ranked grid
cells for mammals within Protected Areas is predicted to decrease
in the 2020s, but then increase in the 2050s and again in the 2080s.
For butterflies, after an initial decrease in the 2020s, it is predicted
to increase in the 2050s, but then decrease under the A2 scenario
for the 2080s (Fig. 2c). A similar pattern is also seen for both taxa
under the B2 scenario (Fig. 2d). The standard errors are fairly large
for mammals currently and for butterflies in the 2080s due to large
differences between the results of Zonation runs.

The conservation value of grid cells (Zonation score) varies
according to the future climate-change scenario (Fig. 3), with sim-
ilar changes being seen under the A2 and B2 scenarios. For mam-
mals there is predicted to be a decreased number of areas with
high conservation value, especially in Sinai and Northern Egypt,
but a slight increase in conservation value in the north-eastern part
of Sinai. For butterflies, the Sinai region maintains a high conserva-
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(a)

Fig. 1. Species richness maps for (a) mammals and (b) butterflies under A2 and B2 scenarios for all years. Species richness was calculated as the sum of the probabilities of
occurrence. A red colour implies that a low number of species are present and a green colour indicates high species richness. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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tion value in the future, but the area with high conservation value
in Northern Egypt appears to decrease.

4. Discussion

Egypt’s conservation efforts began with the establishment of
the Environmental Affairs Agency in 1982, followed by Ras Muha-
med National Park, declared in 1983, and its signing of the Rio Con-
vention in 1992 (EEAA, 1998). Conservation of the environment
and of biodiversity are therefore relatively recent activities of
government, and the $1 m-BioMAP project (funded by Italian
Cooperation via Debt Swap) was the first to collate records of the
various taxa, let alone use them in analyses for conservation. After
the 4-year project had finished, it was not extended partly because
of a lack of awareness of the role of such data in conservation deci-
sion-making. This sequence of events illustrates the dilemma in
which most countries of the world find themselves. There are some
existing data but it takes time and money to collate them into a
usable format, even if anyone has the vision to want it done. To col-
lect new data takes a great deal more time and money. Thus only if
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Fig. 1. (continued)
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one is lucky are there existing databases of records with which to
perform the kind of work presented here. The best one can hope for
is that there are enough records to overcome their long-recognised
shortcomings of spatial and temporal bias (Newbold, 2010) and
hence to enable the use of species distribution models with some
reasonable degree of confidence. However, no-one actually doing
conservation can afford to await the perfect dataset (MEA, 2005).

It is a similar story with the establishment of Protected Areas.
There is quite a body of literature on optimal networks of Protected
Areas (Sarkar et al., 2006). In the face of climate change, it is pos-
sible to design Protected-Area networks to minimise its effects
on biodiversity. Game et al. (2011) showed how one can design
defensible strategies in the face of uncertainty: either look for
areas where climate change is predicted to be minimised, or use
environmental heterogeneity as a surrogate to indicate high biodi-
versity (such as areas of geophysical diversity – areas chosen on
this basis in New Guinea contained 90–98% of floral biodiversity
and 50–78% of faunal biodiversity), or choose an optimal balance



(a)

(b)

(c)

(d)

Fig. 2. Mean ranked score of cells (a and b) and number of high-ranked cells (c and
d) under future climate change scenarios A2 (a and c) and B2 (b and d) scenarios
(for the 2020s, 2050s and 2080s) within Protected Areas for mammals and
butterflies. Averages were calculated across all Zonation runs and across all three
climate models (HADCM3, NIES99 and CSIRO MK2). High-ranked cells are cells
which have a ranked score >0.7.
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between fragmentation and maximising environmental diversity
within Protected Areas. However, these are only possibilities if
you can choose where to place Protected Areas a priori: usually
we already have an existing network, and it is only possible to
adapt it, for example using linking corridors (Vos et al., 2008; Law-
ton, 2010). In order to do this effectively, a great deal of informa-
tion is required about the species concerned (e.g. Vos et al.,
2008), which is lacking for the biodiversity of most countries such
as Egypt.
This study is limited to within the borders of Egypt, where there
are few or no endemic mammals except possibly the recently
recognised Egyptian Weasel, Mustela subpalmata (Basuony et al.,
2010), and only two endemic butterfly species (Gilbert and Zalat,
2008). This clearly does not encompass the full geographic range
of each species, known to introduce some uncertainty and error
into predictions because the full range of the niche is not modelled,
and the projections of future climates therefore involve extrapolat-
ing beyond the limits of the data (Thuiller et al., 2004; Barbet-Mas-
sin et al., 2010). In our case, for example, the current mean
maximum temperature ranges from 25.2 to 42.1 �C, but under
the A2 scenario is predicted to reach the range 31.2–48.5 by
2080. The current range of annual precipitation is 0–227 mm, but
is predicted to change to 0–198 mm in the same scenario. The
uncertainties involved in extrapolating outside the limits of the
data will clearly vary with the taxon and range being modelled,
but appear to be relatively small (Thuiller et al., 2004; Marbet-
Massin et al., 2010), and we are here interested in the overall pat-
terns of changes in species richness across 60 mammal and 35 but-
terfly species, rather than the specific details of individual species.

A second issue is the fact that extra-limital species, such as
those from Sudan, could invade under climate change, and these
potential colonists are not captured in our models (Pearson et al.,
2002; Barbet-Massin et al., 2010). One response to these issues is
to omit parts of the country from consideration (Sætersdal et al.,
1998), but a better strategy is to model a greater range: Pearson
et al. (2002) used the whole of Europe when considering plants
in the UK, and Barbet-Massin et al. (2010) used North Africa and
the western Palaearctic in modelling Iberian bird distributions.
The recommendations are to use the entire ranges of species, or
at least entire biogeographic regions. Once again in Egypt this is
impossible to fulfil. There appear to be no validated reliable data-
sets from Sudan or Libya, for example, to match those from Egypt.

It is often claimed that it is very difficult to predict climate
change effects on biodiversity because of the wide variety of influ-
ences other than merely climate on populations and hence distri-
butions, such as interactions between species (review, see Bellard
et al., 2012). Species differ in their ability to move, and the rate
of adaptation to changing conditions, both of which might affect
responses to climate change. Here we are not expecting any spe-
cies to become extinct over the next few decades, but merely to
change their distribution within Egypt. Virtually nothing is known
about the dependencies of Egypt’s mammal and butterfly species
on other elements of the biodiversity of the country, and thus cur-
rently it would be impossible to incorporate such considerations
into models of how biodiversity might be affected by climate
change.

We use here species distribution modelling (using MaxEnt) to-
gether with spatial prioritization for conservation (using Zonation),
a combination increasingly used to assess Protected Area networks
in the face of climate change (e.g. Carvalho et al., 2010; Klorvutti-
montara et al., 2011). Given what we have said above, we think this
is all that many countries will be able to do, given the availability
of datasets and the current state of knowledge about which of their
species will move and which will not, and the linkages among spe-
cies within local communities.

As far as we are aware, this is the first-ever published study of
the impact of climate change on biological diversity in Egypt,
although there are two studies on single species (Hoyle and James,
2005; El-Din Soultan, 2011); there are similar studies on the birds
(e.g. Jetz et al., 2007) and bats of other countries (e.g. Rebelo et al.,
2010; Hughes et al., 2012). We have concentrated not on predic-
tions of extinction, but on the relative ability of the Protected Area
network to conserve Egypt’s fauna. Egyptian mammal and butter-
fly species currently have higher species richness inside Protected
Areas than outside (Newbold et al., 2009). There are some strong
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Fig. 3. Zonation priority scores of cells for (a) mammals and (b) butterflies at present and under A2 and B2 scenarios for the 2020s, 2050s and 2080s. A grey colour indicates
that the score is between 0 and 0.7, amber is 0.7–0.8, yellow is 0.8–0.9 and green is 0.9–1. The Zonation score in a particular grid cell is equivalent to the conservation value of
that grid cell; therefore green cells have a very high conservation value. Averages were calculated across all Zonation runs and across all three climate models (HADCM3,
NIES99 and CSIRO MK2). The blue lines show boundaries of Protected Areas. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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spatial patterns to the predicted consequences of climate change.
We can suggest which aspects of the climate are causing changes
in species richness by inspecting the maps (Figs. 1 and 2) together
with the MaxEnt results for individual species. The variables which
consistently contributed most to the models were the annual pre-
cipitation (sum_prec) and the variation in the minimum tempera-
ture (std_tmin).

Mammal species richness is predicted to increase in northern
areas of Egypt under future climate scenarios; this correlated with
an increase in annual precipitation (up to 41 mm) and a decrease in
minimum and maximum temperature (up to 1 �C) in this region.
The predicted cooler and wetter climate here in the future may
be more likely to suit most mammal species. However, areas inland
and in southern Egypt are predicted to decrease by up to six spe-
cies as the climate here becomes less suitable for many mammals
(cf. Honnay et al., 2002; Hannah, 2008). By contrast, rodents are
predicted to increase in species richness in central areas of Egypt,
presumably because they are better able to cope with the in-
creased temperature (up to 7 �C) and decreased precipitation (up
to 23 mm). Because the species distribution models were devel-
oped using only Egyptian records, we cannot estimate how many
species from Sudan will migrate into southern Egypt, reducing
the predicted losses in species richness.

Butterfly species appear to become slightly better suited to liv-
ing in northern regions of Egypt under future climates, and less
able to survive in southern and central regions. The climate models
suggest that northern Egypt will become cooler (by up to 1 �C) and
wetter (by up to 41 mm) in the future, leading us to believe that
this climate will benefit butterflies. For example, the Olive-haired
Skipper, Borbo borbonica, appears to increase its distribution signif-
icantly in northern Egypt under future climates.

The likely changes in distribution that we have estimated could
be too small because of the nature of the data we used. Since the
data consists of records from the period 1900–2007, it is possible
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Fig. 4. Proposed position of new Protected Areas in Egypt (shown in red) which take into account species richness and conservation value results which have been produced
as part of this study. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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that distributions have already altered in response to climate
change since 1900. The climate averages derive from the period
1950–2000. Unfortunately, we cannot avoid this temporal mis-
match by selecting just records collected since 1950, because there
are too few: Egypt shares this dilemma with a great number of
similar countries. The projected changes in the distribution of
mammals and butterflies therefore may be underestimates if the
‘current’ distributions are a mixture of pre- and post-change
responses.

The spatial pattern of the predicted changes in Egypt is impor-
tant. Protected Areas in Sinai, for example, are predicted to main-
tain a high conservation value for mammals throughout the
period. The larger mainland Protected Areas (e.g. Gebel Elba and
Wadi El Allaqi) are predicted to decrease in conservation value
for mammals initially, but then steadily increase up to the
2080s: thus it might be wise to invest in these Protected Areas
now. Areas of the Nile Valley and Delta have high species richness
and hence conservation value, but protecting them could be diffi-
cult given their long history of economic exploitation and very high
human population density (Newbold et al., 2009).

Under future climate there is a large initial decrease in the rel-
ative conservation value (mean ranked scores and numbers of high
ranked grid cells) of areas within the Protected Areas, but then this
appears to increase gradually from the 2050s onwards. This pat-
tern of an initial decline and then a gradual increase in relative
conservation value over time is a striking result. The reason for this
interesting non-linear effect of climate change is unknown. Further
work is required to determine the cause. Most areas will need pro-
tection now to prevent a predicted decline in relative conservation
value by the 2020s, for example by increasing the number of Pro-
tected Areas in high-risk areas and increased protection from hu-
man disturbance. By the 2080s the relative conservation value of
Protected Areas is predicted to increase slightly, suggesting that
Protected Areas will become more valuable for biodiversity main-
tenance. Our results suggest that there are six areas where new
Protected Areas would help buffer the conservation network
against the predicted declines in species richness and conservation
value caused by climate change (Fig. 4). However, they include the
major areas of population concentration in Cairo, Alexandria and
the Nile Delta, and the major area of building construction along
the Mediterranean coast between Alexandria and Mersa Matrouh.
This illustrates one of the conservation’s dilemmas that human set-
tlements have often been in fertile areas rich in biodiversity.

The results for mammals and butterflies for both species rich-
ness and conservation value under future climate appear to be
rather similar. In general, mammals and butterflies are predicted
to have high species richness in northern Egypt and lower species
richness in southern Egypt. The mean ranked scores of conserva-
tion value are always higher for butterflies under future climate,
but a similar pattern is seen for both taxa. A similar pattern is also
seen for the number of high-priority grid cells. There is an initial
decline in conservation value for both mammals and butterflies
and a similar distribution of high priority cells for each taxa. How-
ever, butterflies contain many more cells with a value greater than
0.9 and mammals occupy more non-coastal areas. To prevent the
initial decline in conservation value, management decisions will
probably need to be taken; this should perhaps include considering
an increase in the number of Protected Areas in the relevant areas,
designed to maximise resilience to climate change. It would also be
useful to have dynamic conservation plans that can allow Pro-
tected Areas to shift in the future with climate change (Schwartz,
2012). The outlook for mammals appears to be fairly good, but con-
servation efforts may need to focus on preventing species richness
declines in southern Egypt and preventing declines in areas of high
conservation value by increasing the effectiveness of current Pro-
tected Areas and creating new ones. For butterflies, the outlook ap-
pears also to be good since areas of high conservation value appear
to be similar in the 2080s. Current conservation efforts may be en-
ough, perhaps coupled with action to prevent the small decline in
species richness in southern and central Egypt.

At present our results are conservative since we could not incor-
porate additional factors into our projections such as species inter-
actions, vegetation or demographic changes. A next step might be
to use topographical, elevational and land-cover data to provide a
better understanding of which habitat types are most susceptible
to future climate change, and to try to assess the abilities of each
species to move in response to climate change, for example be-
tween elevational bands (Menendez et al., 2007; Van Mantgem
and Stephenson, 2007). As more data becomes available for Egypt
(with datasets for another 10 taxa soon to be finalised), it will be
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instructive to include a wider range of taxa: Kremen et al. (2008)
used six taxa (ants, butterflies, herptiles, mammals and plants) in
their study of Madagascan biodiversity. Conservation management
of Protected Areas in the future should include information on the
responses of species to climate change: we cannot assume that the
distributions of species will be stationary (Klorvuttimontara et al.,
2011). Protected Areas that are predicted to decline in relative con-
servation value in the future may benefit from actions to reduce
human disturbance and to increase connectivity, since well-con-
nected areas may allow species to persist for longer (Cabeza and
Moilanen, 2001). The conservation value of many Egyptian Pro-
tected Areas is predicted to increase in the longer-term future, so
it is vital that long-term protection of these areas is guaranteed.
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