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a b s t r a c t

Human activities affect the distribution and abundance of plants, with impacts on ecosystem services
and human well-being; it is thus vital that a network of Protected Areas is capable of conserving plants
that are useful. Using the species distribution (SDM) model algorithmMaxEnt, we tested whether Egypt's
network of Protected Areas performs well in conserving the region's important medicinal plant species.
We constructed individual SDMs for each species, and then combined the models into a single ‘species-
richness’ layer, which we then compared to the distribution of the existing Protected Areas. Temperature
was the most important of eleven predictor variables used to build the SDMs. Assuming the SDM's
prediction of suitable habitat was accurate and corresponded to the occurrence of the medicinal plant
species, then on average species richness was significantly higher within than outside the Protected
Areas. Based on our findings, Egypt's Protected Areas are effective at conserving its medicinal plants.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Human activities are having a strong impact on plant abundance
and distribution, with consequent effects on ecosystem services
and human well-being (Klein et al., 2008). This growing effect of
human activities on biodiversity (Chapin et al., 2000) creates an
urgent need to understand the elements that determine the dis-
tribution and abundance of plants in order to enhance their con-
servation (Dubuis et al., 2011). The identification of species-rich
regions and those where geographically limited species co-occur
can optimise the creation of Protected Areas (Boj�orquez-Tapia
et al., 1995).

Medicinal plants are one of the most important elements of
biodiversity around the world (Klein et al., 2008; Okigbo et al.,
2008) because of their role in ecosystem services such as health-
care, cultural value and heritage, local economics and human well-
being, especially in poor areas (Klein et al., 2008; Okigbo et al.,
2008). Conserving and protecting these kinds of species is vital,
including improving knowledge about the important ecological
requirements of medicinal plants, and raising awareness among all
stakeholders to protect this heritage. Consequently, conservation
planning and effective management is important in protecting the
).
most threatened species in order to avoid declines in the diversity
of medicinal plants.

Species distribution models (SDMs) can be used to predict the
geographic distribution of individual species using locality data and
ecological variables as predictors (Franklin, 2009: 41e45). While
occurrence records can be harvested from museums/herbaria,
published reports, and original fieldwork, accurately identifying
whether a species is truly absent is exceedingly difficult. To address
this challenge, several SDM algorithms have been designed to
employ only positive presence data (Phillips et al., 2006). One such
SDM algorithm, MaxEnt, has been shown to be one of the most
effective tools for accurately predicting species distributions (Elith
et al., 2006). SDMs using MaxEnt offer a valuable tool for creating
general patterns of species richness without needing to analyse the
specific quality or precision of the predictions for every individual
species (Pineda and Lobo, 2009). Several studies have added
together the models for individual species to create maps of species
richness, the approach we adopt here. For example, Ortega-Huerta
and Peterson (2004) added the individual maps of 285 bird and 114
mammal species of part of Mexico to create a map of species
richness; Newbold et al. (2009) and Pineda and Lobo (2009) used
the same approach for Egyptian mammals and butterflies, and
Mexican amphibians respectively, as did de Pous et al. (2011) on
Moroccan reptiles. It is exciting that the same approach can be used
to project into the future under climate change (Distler et al., 2015),
as we have also done (Kaky & Gilbert, in prep.). Ideally the maps of
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predicted species richness should be validated using independent
data (Pineda and Lobo, 2009). Such species-richness maps make it
possible to distinguish hotspots of species richness (Newbold et al.,
2010), and hence to select feasible regions for conservation rela-
tively objectively (Pressey et al., 1993). This is a powerful tool to
help build conservation efforts or anticipate the future of biodi-
versity under worldwide climate change (Algar et al., 2009).

The climatic predictors used in our SDMs should be very suitable
for plants. The physiological toleration hypothesis suggests that
plant species richness is most elevated in warm and/or wet envi-
ronments because a more extensive range of functions can perse-
vere under such circumstances (Spasojevic et al., 2014). For
instance, Hawkins et al. (2003) found that a measure of the balance
between energy and water nearly always described spatial differ-
ences in species richness better than other environmental vari-
ables. In warm regions of the tropics and subtropics, the most
robust predictors are typically water variables, while water/energy
variables (for plants) or energy predictors (for animals) predomi-
nate in high latitudes (Hawkins et al., 2003).

Protected Areas currently cover about 12% of the terrestrial
surface of the earth (Seiferling et al., 2012), while those that have
been declared in Egypt cover 15% of the total land area (El-Gabbas
et al., 2016). The 30 Egyptian Protected Areas were all established
since 1983, based on the recommendations of experts familiar with
Egyptian biodiversity (Newbold et al., 2009). An obvious issue is the
extent to which these Protected Areas are capable of conserving
Egypt's fauna and flora: a basic requirement is that they contain a
high proportion of the biodiversity of the country. Thus ideally
there should be higher species richness within the Protected Areas
than outside them. Several studies have measured this: for
example, Sciberras et al. (2013) showed that the density and
biomass of fish and invertebrates inside partially protected areas
was higher than in unprotected areas; Newbold et al. (2009) and
Lee et al. (2007) found that species richness inside Protected Areas
was higher than outside, but others found the reverse (Pawar et al.,
2007; Traba et al., 2007). Human activities are one of the main
reasons for declines both inside and especially outside Protected
Areas: thus forest cover decreased between 1980 and 2001 in areas
surrounding most tropical Protected Areas (DeFries et al., 2005),
and one might anticipate similar declines in the fauna. The active
management of Protected Areas needs many more such compari-
sons to guide management decisions (Linkie et al., 2006).

Our objective is therefore to assess the role of the network of
Egyptian Protected Areas in conserving medicinal plants by
comparing their diversity within and just outside each Protected
Area, averaging this difference across all the Protected Areas. We
did this by predicting the distribution of each species using SDMs,
and summing together all the SDMs to create two kinds of species-
richness maps (by either using or not using thresholds to binarize
the predicted habitat suitabilities). We then use these maps to
assess the predicted species richness inside and outside Egypt's
Protected Areas.

2. Methods

We used data for 121 medicinal plant species of the Egyptian
flora. The occurrence data for these species were collated by the
BioMAP project (http://www.biomapegypt.org/), a project run from
Cairo in 2004e2008 and funded by Italian Debt Swap. The data are
presence-only records collected from different sources (i.e. litera-
ture, herbarium, and field work). To avoid inaccurate predictions,
we deleted species with fewer than ten records to avoid overfitting
(Baldwin, 2009), species with more than ten but spatially very
restricted records, and the one species whose SDM had amean AUC
less than 0.7 (Franklin, 2009: 222e223). We ended up with 114
species of Egyptian medicinal plants, with 14396 point records.
The environmental variables used in this study were 23 pre-

dictors, 19 of them (Bio layers) downloaded from the WorldClim
v1.4 dataset at resolution of 2.5 arc-minutes (http://www.
worldclim.org/bioclim) (Hijmans et al., 2005) (Table 1). Normal-
ized Difference Vegetation Index (NDVI) data for seven years
(2004e2010) were downloaded from the Spot Vegetation website
(http://free.vgt.vito.be/) and used to create two layers: maximum
NDVI (Max_NDVI), and the difference between the Minimum and
Maximum NDVI values (NDVI_differences). A further environment
layer was a habitat layer, derived from the Biomap project, which
divided Egypt's terrain into eleven classes (“sea, littoral coastal
land, cultivated land, sand dune, wadi, metamorphic rock, igneous
rock, gravels, serir sand sheets, sabkhas and sedimentary rocks”)
(for more detail, see Newbold et al., 2009). Altitude data were
downloaded from http://www.cgiar-csi.org/data/elevation and the
resolution rescaled from 90m to be 2.5 arc-minutes (see (El-Gabbas
et al., 2016). Eleven of the 23 environmental variables (see Table 1)
remained for use after 12 were removed based on collinearity
analysis using the Variance Inflation Factor, implemented in R v2.15
(the 'car' package: R Development Core Team, 2012).

We used Maximum Entropy (MaxEnt) version 3.3.3 k (Phillips
et al., 2006) (downloaded from: http://www.cs.princeton.edu/
~schapire/maxent/) to run the models, choosing a set of options
(i.e. feature classes QPT, 10000 background points, 1000 iterations,
cross-validation with 10 replications, 10% training presence
threshold, and logistic output format) to create both ‘probability’
(i.e. raw values of habitat suitability) and ‘binary’ (predicted 'suit-
able'/'unsuitable' via thresholding) maps. MaxEnt performance is
good with presence-only data and small numbers of records (Elith
et al., 2006; Franklin, 2009: 62e63), and its performance is good in
comparison with other algorithms (Elith et al., 2006). The options
were chosen after exhaustive runs with different option combina-
tions (of feature classes, number of background points, number of
iterations and regularization values) to obtain the best models. Two
statistics were used to evaluate the accuracy of each model, the
AUC, and the true skill statistic (TSS) (Allouche et al., 2006). TSS
values lie between �1 and þ1: close to þ1 indicates perfect per-
formance, while close to zero or less than zero point to model
performance no better than random (details, see Allouche et al.,
2006). (For details of each SDM, see Supplementary Table S1.).

The relative importance of the environmental predictors can be
determined in three ways by Maxent (percent contribution, per-
mutation importance, jacknife (Phillips et al., 2006):). Care is
needed when there are high correlations between variables, but
pre-screening variables for collinearity (as we have done) mini-
mises this problem. Here we used permutation importance to
determine the importance of the environmental predictors, calcu-
lated by permuting the values of each predictor and calculating the
resulting reduction in the training AUC: a large reduction shows
that the model is influenced by that predictor. The values are
standardized to a percentage (Phillips et al., 2006).

We created two kinds of maps of the distribution of species
richness. The first was the ‘probability’ map, made manually by
obtaining the average of the replicate ascii files obtained from
Maxent for each species, and then adding all the species layers
together using the ‘raster calculator’ of ArcGIS10.2.2. This map was
then rescaled to fit the same range as the second type, the ‘binary’
map, which is the product of adding together the binary maps for
each species. The binary map converts each pixel value of the
MaxEnt output (a continuous value between 0 and 1) into binary
data (predicted suitable/unsuitable) by choosing a threshold rule
(see Liu et al., 2005). We chose the “10% training presence” as our
threshold rule (El-Gabbas et al., 2016), which produced a binary
map for each of the 10 replicates for each species. Subsequently we
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Table 1
Environmental variables used to build the models (highlighted variables were rejected after applying Variance
Inflation Factor analysis to reduce collinearity.

BIO1 Annual Mean Temperature
BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))
BIO3 Isothermality (BIO2/BIO7) (* 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO5 Max Temperature of Warmest Month
BIO6 Min Temperature of Coldest Month
BIO7 Temperature Annual Range (BIO5-BIO6)
BIO8 Mean Temperature of Wettest Quarter
BIO9 Mean Temperature of Driest Quarter
BIO10 Mean Temperature of Warmest Quarter
BIO11 Mean Temperature of Coldest Quarter
BIO12 Annual Precipitation
BIO13 Precipitation of Wettest Month
BIO14 Precipitation of Driest Month
BIO15 Precipitation Seasonality (Coefficient of Variation)
BIO16 Precipitation of Wettest Quarter
BIO17 Precipitation of Driest Quarter
BIO18 Precipitation of Warmest Quarter
BIO19 Precipitation of Coldest Quarter
Altitude Altitude
Habitat Habitat
NDVI_Max NDVI maximum value
NDVI_Difference Absolute difference between the highest and lowest NDVI values
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produced a single consensus binary map for each species by allo-
cating ‘suitable’ to a pixel that had ‘suitable’ values in more than
50% of the model runs (i.e. >5 replicates). Then we added together
all the species maps to create the ‘binary map’ for species richness.

Finally we compared the species richness inside and outside
Protected Areas. First we chose at random 2000 pixels from the
map. A 50-km buffer zone was created around each Protected Area,
and the random pixels that lay within each Protected Area and
within each buffer zone identified. The mean species richness for
the random pixels within each Protected Area ('within') and within
its buffer zone ('outside') created paired values inside and outside
each Protected Area. We then compared the average difference
(within - outside) using a paired t-test.
0.8
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Mean AUC
Fig. 1. Frequency distribution of the mean AUC values achieved in the distribution
models of plant species.
3. Results

In terms of mean AUC values, all models showed good perfor-
mance (range 0.802e0.989) (mean¼ 0.901 ± 0.0036), as do the TSS
scores (mean TSS across all species 0.63 ± 0.01). The lowest mean
AUC value was recorded for Pluchea dioscoridis and the highest for
Solanum elaeagnifolium (for more details see Supplementary
Table S1). High mean AUC values were not just limited to species
with few records, since there were several species with large
numbers of records which achieved very good performance. There
were 12 species with mean AUC values of 0.80e0.85, 38 species
between 0.85 and 0.90, 55 species between 0.90 and 0.95, and 10
with very high AUC between 0.95 and 1 (Fig. 1). There was no
significant correlation between the mean AUC and the number of
records used in themodel (n¼ 114, r¼�0.052, P> 0.05). In general,
for the 10 replicates for each species there were not big differences
between the AUC values for each run. The standard deviations
ranged between 0.011 and 0.291, the smallest for Lavandula
pubescens and the highest for Herniaria hirsuta. There were five
species with a standard deviation between 0.2 and 0.3, 14 species
between 0.2 and 0.1, and the rest (96 species) less than 0.1
(Supplementary Table S1).

Environmental predictors that achieved highest permutation
importance through all the modelled species, and the maximum
contribution to the final models, were Bio6 (the minimum tem-
perature of the coldest month), altitude, Bio3 (isothermality, the
ratio of the mean monthly temperature range [max emin] and the
maximum annual temperature range), Bio8 (the mean temperature
of the wettest quarter), and Bio4 (temperature seasonality, the SD
of monthly temperature). There were six variables with low per-
mutation importance: Bio13 (precipitation of the wettest month)
Bio15 (precipitation seasonality, the CV of monthly precipitation),
habitat, Bio9 (mean temperature of the driest quarter), differences
between maximum and minimum NDVI, and maximum NDVI
(Fig. 2). Across all species, Bio6 was the highest for 36 species,
followed by altitude (highest for 19 species), Bio3 and Bio8 (16
species) and Bio9 (see Fig. 3). Sometimes Bio15, Bio13, habitat and
Bio9 achieved the highest mean permutation importance, but
clearly these were not normally the most influential predictor.

In general, the occurrence locations (Fig 4) matchwell with both
types of species richness maps (Fig. 5A & B). Species richness is
highest from the southwest to the northeast, especially North and



Fig. 2. Contribution to the final species distribution models made by each environ-
mental predictor, illustrated by the mean permutation importance.
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Fig. 3. Numbers of species where particular variables were the best predictor in
species distribution models. One of the variables (ndvi_max) included in modelling
was never the best predictor.

Fig. 4. Locations which Egyptian plants were sampled (square circle), and Protected
Areas of Egypt (pink shading). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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South Sinai, along the Mediterranean coast, and scattered areas of
the Nile Delta. The probability species richness map (Fig. 5A) shows
that the highest predicted species richness is situated in south
Sinai, especially the area around St Katherine to Sharm El-Sheikh, to
the Aqaba Gulf from Sharm El-Sheikh through Dahab to Taba,
around El-Tur, some scattered locations between Abu Zneima to
Suez, some scattered locations in North Sinai around Gebel Yillaq,
El-Hassana, Gebel El-Hallal, Gebel El-Maghara, and some small
areas on the border between Egypt and Israel, especially east of
Gebel El-Hallal. All locations along the Mediterranean Sea coast
from Rafah to Port Said are also suggested to have high species
richness, especially from around Lake Bardawil to Mersa Martruh,
and inland from Alexandria to Wadi El-Natrun (Supplementary
Fig. S1).
In the binary richness map (Fig. 5B) the highest species richness
is predicted to be located in north-eastern Egypt, especially in Sinai
from the north to the mountain areas of the south, in the north
particularly at Gebel Yillaq, El-Hassana, Gebel El-Hallal, Gebel El-
Maghara, all the border between Egypt and Israel, the coastal re-
gions of the Mediterranean Sea from Rafah to Port Said, and south
of Gebel Yillaq and El-Hassana. In the south the highest predicted
species richness is the area from St Katherine to Sharm El-Sheikh,
then the entire border along the Aqaba Gulf and along the other
side from St Katherine to El-Tur, and to Suez along the Red Sea. The
highest predicted species richness is north of Suez to Ismailia, east
and west of Ismailia, Greater Cairo, the Mediterranean Sea coast
from Lake Manzala to Sallum, north of Wadi El-Natrun, Ain Sukhna,
Gebel El-Gallala El-Bahariya, and from Ras Zaafarana south to Ras
Gharib, then from Ras Gharib to Hurghada, with some scattered
locations at Gebel El-Gallala El-Qibliya. There are also some scat-
tered areas between Mersa Alam to Berenice, and south of Halayeb
(Supplementary Fig. S1).

The predicted species richness was significantly higher inside
Protected Areas than outside for both the binary map (paired
t ¼ 14.8, df ¼ 24, p < 0.001) (Supplementary Fig. S2A) and for the
probability map (paired t ¼ 9.9, df ¼ 24, p < 0.001) (Supplementary
Fig. S2B).

4. Discussion

The most important result of this study was that the predicted
species richness of medicinal plants was higher inside Egypt's
Protected Areas than outside, implying that the Protected Areas
have been well located to implement the conservation of these
important deliverers of a valuable ecosystem sevice.

Overall model performances were good in terms of the mean
AUC scores. There are some studies which have recently criticized
the use of AUC as an indicator for model accuracy (Austin, 2007;
Lobo et al., 2008), because of its bias caused by species with nar-
row ranges (Lobo et al., 2008). Getting high AUC values is easy
when there are relatively few records (Jim�enez-Valverde et al.,
2008; Lobo et al., 2008), and therefore it is worth using other
criteria such as the True Skill Statistic, although many recent
studies still use AUC alone e.g. (Warren and Seifert, 2011;
Beauregard and de Blois, 2014). When there is agreement



Fig. 5. Species richness for predicting current distributions: (A) probability richness map resulting from summing all individual species probability maps then rescaled to the same
range as that of the binary map; (B) binary richness map, produced from adding all individual species thresholded maps. The colours range from blue to red, where blue indicates
low and red high species richness. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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between both validation methods, thenwe can assume goodmodel
performance (Beauregard and de Blois, 2014). In our data there was
no significant correlation between the mean AUC values and the
number of records, and hence we believe that sample size did not
affect model performance (Elith et al., 2006; de Pous et al., 2011).
Some other studies have achieved good model performance with
large sample sizes (Kadmon et al., 2003; Hernandez et al., 2006), as
we did.

In SDM studies, selecting appropriate environmental variables is
very important because climate predictors are assumed to deter-
mine the distribution of species; a current topic of research is the
extent to which biotic interactions affect distributions, but there is
no consensus about how to allow for this (Wisz et al., 2013). Robust
models are produced by choosing the right predictors and model-
ling approach (Elith and Leathwick, 2009), which are then useful in
conservation analysis (Austin, 2007; Araújo and Peterson, 2012).
The most significant environmental variables in our study were the
minimum temperature of the coldest month, followed by altitude;
these make ecological sense in that temperature and elevation
should predict much of the distribution of plant species in Egypt.
Newbold et al. (2009) found that temperature was the major pre-
dictor of the distributions of Egyptian butterflies, again making
perfect ecological sense. Some variables did not have much of an
effect on species distributions (e.g. habitat, and NDVI): neither of
the NDVI predictors provided useful information on Egyptian plant
distributions. Some studies have found NDVI important (Anderson
et al., 2006), while some have not (El-Gabbas et al., 2016). Most of
Egypt is hyper-arid with extremely low NDVI values, so it is not
surprising that NDVI is poor as a predictor. Habitat was not a
powerful predictor either, perhaps related to its correlation with
other predictors (e.g. altitude).

The predictions showed that the main hotspots of plant species
richness are found in South Sinai, extending around the northern
part of Egypt: this pattern occurs in both probability and binary
species-richness maps. Similar studies on Egyptian animal taxa
(Gilbert and Zalat, 2008; Basuony et al., 2010; Leach et al., 2013; El-
Gabbas et al., 2016) found high levels of predicted species richness
around greater Cairo. This may be the result of spatial bias in the
records, particularly of mammals. In the plant dataset, recent more
systematic collecting has been undertaken in Sinai, and hence there
is a different spatial bias in the data. However, the gradient from
south-west to north-east in plant species richness is undoubtedly
correct. The physiologically optimal temperature for most plants is
between 10 and 35 �C (Berry and Bjorkman, 1980), much more
present in the north than in the south, although desert plants live in
much higher temperature (Berry and Bjorkman, 1980) and most
Egyptian habitats are deserts of one kind or another (90% of the
land). Most areas in Egypt receive very much less than 80 mm
precipitation annually, while the northern coastal areas can receive
the highest recorded levels of up to 180e200 mm (El-Nahrawy,
2011) (albeit meagre by world standards).

Plant species richness for both the probability and binary maps
was significantly higher inside Protected Areas than outside, as
Newbold et al. (2009) found for Egyptian butterflies and mammals.
Thus despite their relatively recent establishment, the locations of
Egypt's Protected Areas were well chosen. Sciberras et al. (2013) for
marine reserves and Lee et al. (2007) for Sulawesi also found higher
biomass inside Protected Areas than outside, but other studies on
Indian herpetofauna (Pawar et al., 2007; Traba et al., 2007) have
found the converse, and some have found no differences (e.g. Joppa
et al. 2008) showed that the vegetation inside and outside Pro-
tected Areas in both the Amazon and Congo was very similar).
Obviously Protected Areas are generally established in places
known to have high biodiversity, and the Egyptian Protected Areas,
although relatively new, were chosen carefully with expert
knowledge (Newbold et al., 2009). Alternatively, for older reserves,
effective ecosystem management inside Protected Areas could be
one of the reasons for their high biodiversity (Thomas and
Gillingham, 2015).

About 12% of global terrestrial habitat is covered by Protected
Areas, but many of them fail to protect biodiversity and ecological
processes (Seiferling et al., 2012). One of the main reasons for that
failure is human activity changing the vegetation inside Protected
Areas and the areas around them (DeFries et al., 2005). It is
important to sustain habitat heterogeneity within Protected Areas
and the surrounding areas to enable good management (Oliver
et al., 2010). There is clear evidence that forest cover has
decreased from 1980 to 2001 in the areas neighbouring Protected
Areas in tropical regions. High human population densities and
land-use isolate Protected Areas from their surroundings (Joppa
et al., 2009).

In conclusion, the positions of Egypt's Protected Areas appear to
have been well chosen to maximise their potential effectiveness in
conserving plant diversity, and their potential ability to preserve at
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least one important ecosystem service, that deriving from medici-
nal plants. A second conclusion we can draw is that species dis-
tribution modelling is an appropriate approach to measuring
patterns of species richness in countries where information is
sparse, and records may be the only available data. The models can
predict new suitable locations for species that have not been sur-
veyed very well (Franklin, 2009: 213e232), helping to save time
and costs. Thus SDMs represent a very useful tool to help plan the
conservation process and suggest the locations of new Protected
Areas in such countries.
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