
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tplb20

Plant Biosystems - An International Journal Dealing with
all Aspects of Plant Biology
Official Journal of the Societa Botanica Italiana

ISSN: 1126-3504 (Print) 1724-5575 (Online) Journal homepage: https://www.tandfonline.com/loi/tplb20

Allowing for human socioeconomic impacts in the
conservation of plants under climate change

Emad Kaky & Francis Gilbert

To cite this article: Emad Kaky & Francis Gilbert (2020) Allowing for human socioeconomic
impacts in the conservation of plants under climate change, Plant Biosystems - An
International Journal Dealing with all Aspects of Plant Biology, 154:3, 295-305, DOI:
10.1080/11263504.2019.1610109

To link to this article:  https://doi.org/10.1080/11263504.2019.1610109

View supplementary material 

Published online: 30 May 2019.

Submit your article to this journal 

Article views: 18

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tplb20
https://www.tandfonline.com/loi/tplb20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/11263504.2019.1610109
https://doi.org/10.1080/11263504.2019.1610109
https://www.tandfonline.com/doi/suppl/10.1080/11263504.2019.1610109
https://www.tandfonline.com/doi/suppl/10.1080/11263504.2019.1610109
https://www.tandfonline.com/action/authorSubmission?journalCode=tplb20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tplb20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/11263504.2019.1610109
https://www.tandfonline.com/doi/mlt/10.1080/11263504.2019.1610109
http://crossmark.crossref.org/dialog/?doi=10.1080/11263504.2019.1610109&domain=pdf&date_stamp=2019-05-30
http://crossmark.crossref.org/dialog/?doi=10.1080/11263504.2019.1610109&domain=pdf&date_stamp=2019-05-30


Allowing for human socioeconomic impacts in the conservation of plants under
climate change
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ABSTRACT
The impact of climate change on conservation planning is affected by the availability of data (espe-
cially in data-sparse countries) and socioeconomic impacts. We build models using MaxEnt for
Egyptian medicinal plants as a model system, projecting them to different future times under two
IPCC 4th assessment emission scenarios (A2a and B2a) assuming unlimited and no dispersal. We com-
pare the effect of two indices of socioeconomic activity [Human Influence Index (HII) and human
population density/km2] as cost layers in spatial prioritization for conservation using zonation. We
assess the efficacy of Egypt’s network of Protected Areas (PAs) by comparing the predicted conserva-
tion value inside and outside each PA under the various scenarios. The results show that there are
many locations in Egypt (the main cities, agricultural land, coastal areas) that are highly ranked for
conservation before human socioeconomic impacts are included. The HII had a stronger impact than
using human population density. The PA value excess (inside–outside) varied significantly with the
type of cost and dispersal, but not with climate-change scenario or Zonation settings. We conclude
that human socioeconomic impacts add new scope and insights for future conservation; and conserva-
tion planning without consideration of such impacts cannot be complete.
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Introduction

Recent work shows that climate change is one of the main
factors affecting the distribution of species and ecosystems
(Alkemade et al. 2011); species really are shifting northwards
(Parmesan and Yohe 2003; Root et al. 2003), and projections
under future climate change predict much larger shifts
(Thuiller et al. 2005; Ara�ujo et al. 2006). These impacts are of
concern to conservation biologists (Brooks et al. 2006), in
particular because one of the predicted impacts is to change
the efficiency of Protected Areas (PAs) in conserving species
in the future (Araujo et al. 2011; Leach et al. 2013; El-Gabbas
et al. 2016; Fois et al. 2018a). The increasing impact of cli-
mate change on plants is predicted to affect northern and
Mediterranean countries in particular (Bakkenes et al. 2006).
Thus, it is important to understand the likely future of the
current network of PAs; with such knowledge, we can pre-
pare suitable conservation plans.

Species distribution modeling approaches have been used
extensively for conservation and conservation planning
(Araujo et al. 2011; Dobrovolski et al. 2014; Fois et al. 2018b).
These model the relationships between species records and
environmental predictors to create current predicted distribu-
tions, which can be projected into the future using models
of climate change. The resulting maps are very valuable in
highlighting the predicted differences between the current
and future distributions of habitat suitability (Thuiller et al.

2005), and can be used to identify locations important for
conservation (Zhang et al. 2012) with the many techniques
and tools developed to prioritize areas for conservation (e.g.
Zonation: Moilanen et al. 2014, ResNet: Sarkar et al. 2002,
Marxan: Game and Grantham 2008, ConsNet: Ciarleglio et al.
2010, MultCSync: Moffett et al. 2005 and WorldMap: Williams
2001). We chose the Zonation framework, because it creates
a priority ranking (Moilanen et al. 2011) useful in assessing
and analyzing the efficiency of the PA network (Leach et al.
2013). Spatial conservation planning is an important
approach for identifying priority areas for conservation when
data are sparse (Moilanen et al. 2009). Spatial conservation
prioritization can applied at different scales, national to glo-
bal (Butchart et al. 2015; Di Minin et al. 2016, 2017), and sup-
ports the complementarity principle, i.e. areas are chosen
taking into account the protection afforded elsewhere
(Cabeza and Moilanen 2001; Klorvuttimontara et al. 2011).

Socioeconomic information is very important in conserva-
tion planning and management. The huge expansion of the
human population and its economic activity over the 20th
century has altered habitats increased invasive species, and
created climate change and pollution (Polasky 2008), creating
a biodiversity crisis (Pimm et al. 1995). Conservation planning
strategies are essential if we are to minimize biodiversity
loss, because the threats to biodiversity are unevenly distrib-
uted (Brooks et al. 2006). Many studies have used spatial

CONTACT Emad Kaky emadd.abbas@spu.edu.iq School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
Supplemental data for this article is available online at https://doi.org//10.1080/11263504.2019.1610109.

� 2019 Societ�a Botanica Italiana

PLANT BIOSYSTEMS - AN INTERNATIONAL JOURNAL DEALING WITH ALL ASPECTS OF PLANT BIOLOGY
2020, VOL. 154, NO. 3, 295–305
https://doi.org/10.1080/11263504.2019.1610109

Published online 30 May 2019

http://crossmark.crossref.org/dialog/?doi=10.1080/11263504.2019.1610109&domain=pdf&date_stamp=2020-04-23
https://doi.org//10.1080/11263504.2019.1610109
https://doi.org/10.1080/11263504.2019.1610109
http://www.tandfonline.com


prioritization for conservation planning based only on bio-
logical data (Naidoo et al. 2006; Leach et al. 2013; El-Gabbas
et al. 2016), which can undermine the conservation process
if they do not take into consideration socioeconomic impacts
(Knight et al. 2008; Faleiro et al. 2013). Recently, several stud-
ies have used socioeconomic data in conservation planning
(Faleiro et al. 2013; Di Minin et al. 2017), especially in the
Mediterranean basin (Petrosillo et al. 2010; Schmitz et al.
2012; Schmitz et al. 2017; Arnaiz-Schmitz et al. 2018) to see
how such information changes spatial prioritization for con-
servation. It is clear that successful conservation prioritization
occurs when land-use considerations have been involved at
the design stage (Moilanen et al. 2011).

Protected areas are considered to be vital and fundamen-
tal units for conservation. In the face of climate changes,
species may become maladapted to the set of ecological
conditions in a given area (Bellard et al. 2012), and therefore
must move to find suitable habitat. Changing in distributions
can lead to shifts of biodiversity distribution (Men�endez et al.
2007), and as a consequence PAs could lose species richness,
and hence lose their efficiency in conservation. Therefore,
recently international conservation planning has been
encouraged to reduce such kinds of decline in conjunction
with the attempt to expand the global network reserve to
cover 17% of all terrestrial land by 2020, based on the
Convention on Biological Diversity report (CBD 2010).

In this study the distributions of 114 plant species were
used to assess the efficiency of a PA network for conserva-
tion under climate change. Species were weighted based on
their conservation status and relative rarity, and then we
applied systematic conservation planning (Margules and
Pressey 2000) using Zonation (Moilanen et al. 2014) to find
the areas suitable for conservation. We assumed we might
be able to save 20% of Egypt’s land, given that 15% is
already within PAs. The difference in the conservation value
of land inside and outside each PA was averaged across PAs
as the test of the efficiency of the PA network (as a one sam-
ple t-test). We made this assessment with different assump-
tions about the pattern of human influence and plant
dispersal abilities.

Methods

The data consist of occurrence records of 121 medicinal
plant species across Egypt, collated by the BioMAP project in
Cairo in 2004–2008, funded by Italian Debt Swap. The data
are presence-only records collected from different sources
(i.e. literature, herbarium, and field work). We deleted species
with fewer than ten records to avoid overfitting (Baldwin
2009), species with more than ten records but spatially very
restricted records, and those with a mean area under the
curve (AUC) of less than 0.7 to avoid inaccurate predictions
(for more details see Franklin 2009; Kaky and Gilbert 2016).
We ended up with 114 species of Egyptian medicinal plants,
with 14,396 point records.

The environmental variables consisted of 23 descriptors,
19 of them (Bio-layers) downloaded from the WorldClim v1.4
dataset at resolution of 2.5 arc-minutes (http://www.

worldclim.org/bioclim) (Hijmans et al. 2005) (Supplementary
Table S1). Normalized Difference Vegetation Index (NDVI)
data for 7 years (2004–2010) were downloaded from the
Spot Vegetation website (http://free.vgt.vito.be/), and then
we created two layers from them: maximum NDVI (Max_
NDVI), and the difference between the Minimum and
Maximum NDVI values (NDVI_differences) (Kaky and Gilbert
2017). A further environmental descriptor was a categorical
habitat layer, derived from the Biomap project (for more
detail, see Newbold et al. 2009). Altitude data were down-
loaded from http://www.cgiar-csi.org/data/elevation and the
resolution rescaled from 90m to be 2.5 arc-minutes (see El-
Gabbas et al. 2016). Eleven of the 23 environmental variables
remained for use after 12 were removed based on collinear-
ity analysis using the Variance Inflation Factor
(Supplementary Table S1), implemented in R v2.15 (the car
package: R Development Core Team 2012).

We used Maximum Entropy (MaxEnt) version 3.3.3k
(Phillips et al. 2006) (downloaded from: http://www.cs.prince-
ton.edu/�schapire/maxent/) to run the models, choosing a
set of options (i.e. feature classes Quadratic, Product, and
Threshold (QPT), 10000 background points, 1000 iterations,
cross-validation with 10 replications, 10% training presence
threshold, and logistic output format) to create both
“probability” (i.e. raw values of habitat suitability) and
“binary” (via thresholding) maps. The chosen options maxi-
mised measures of model fit using AUC and the True skill
statistic (TSS: see Kaky and Gilbert 2016). MaxEnt perform-
ance is good with presence-only data and small numbers of
records (Elith et al. 2006), and its performance is good in
comparison with other algorithms (Elith et al. 2006).

Current distribution models for each species were pro-
jected into the future at three different time slices (2020,
2050, and 2080). The data of the predicted future climates
came from the Intergovernmental Panel on Climate Change’s
(IPCC) 4th assessment data (IPCC 2007) taken from the
International Centre for Tropical Agriculture website (see
http://www.ccafs-climate.org/). We used data from the Global
Circulation Model (GCM) generated by the UK Hadley Centre
for Climate Prediction and Research (HadCM3) for two scen-
arios (A2a [“high change–business as usual”] and B2a
[“moderate change”]), rather than the latest 5th assessment
and its very different scenarios, for continuity with previous
work (e.g. El-Gabbas et al. 2016) and because the differences
in SDMs are slight (Wright et al. 2016). Such GCMs are widely
used in species distribution models to explore the effect of
climate change on biodiversity (Thuiller et al. 2005; Ara�ujo
et al. 2006; Hamann and Aitken 2013).

The A2a and B2a scenarios (see IPCC special reports;
Hannah 2011; Phillips et al. 2017) have different assumptions
about the amount of CO2 emissions. The A2a scenario
expects that the level of CO2 emissions increases without
any barriers, because in this future scenario the world is rep-
resented by high growth rate in human population, not
much technological development, expanded land-use
changes, and people are less environmentally aware. The B2a
scenario expects that the level of CO2 emission will not
change much, because human population growth will be
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slower, with fewer changes in land-use, people are more
environmentally conscious, and there is increasing invention
in technology (Nakicenovic et al. 2000; Saupe et al. 2011).
We assume no phenological or evolutionary reactions to cli-
mate change: species will attempt to find their climatically
suitable habitat dependent on their dispersal capability. We
assumed that some environmental variables (such as habitat
and NDVI) in future models will not change because there is
no information on how these predictors might change; other
variables such as altitude will clearly not change in the
future. These unchanging predictors were included in the
predictor set because we sought the best model in
each case.

We made two assumptions about dispersal: unlimited and
no dispersal. For unlimited dispersal, MaxEnt probability out-
put was used directly. For no dispersal, we produced a con-
sensus binary (presence/absence) map from the 10 replicate
runs manually for each species, allotting a “presence” to a
pixel in the consensus map that had presence values in
more than 50% of the model runs (i.e. >5 replicates). For
times in the future, the consensus binary map was compared
to the “current” one, allocating a pixel to be a ‘presence’ in
the event that it was a “presence” in both maps.

Once the maps of the predicted distributions were avail-
able, Zonation v.4 software (Moilanen et al. 2014) was used

to evaluate the performance of Egypt’s existing PA network
under climate change, and to suggest new PAs for the
future. Using the distribution of species and their relative
weights (see below) to create a sum for each pixel,
Zonation then ranks every pixel in the landscape (Moilanen
et al. 2005; Moilanen et al. 2014) by removing them one by
one (or N pixels by N pixels), with N set by the “warp
factor”) according to chosen removal and aggregation rules,
and recalculating across the remaining pixels. We used two
removal rules: (a) core-area zonation (caz), which removes
the grid cell with the smallest value for the most valuable
occurrence of all species occurring in the cell (emphasizing
rarity); and (b) the additive benefit function (abf), which
removes the grid cell that results in the smallest decline in
the sum of the loss in representation of species (emphasiz-
ing species richness) (Arponen et al. 2005; Moilanen et al.
2005; Moilanen et al. 2011). The “warp factor” was set at
100; this is the number of cells removed at a time—it
greatly reduced the run times. For our aggregation rule,
which promotes aggregated over unduly fragmented areas,
we chose distribution smoothing (Moilanen et al. 2014),
which estimates how species use the territory based on
their dispersal ability (a values) (Moilanen et al. 2005;
Moilanen and Wintle 2006). We assumed that plants with
wind-dispersed seeds can disperse about 20 km, while those

Figure 1. Cost layers used in Zonation and Egypt’s protected areas. (a) the Human Influence Index; (b) Human Population density (both layers have been rescaled
to be on the same range of 0–100); (c) Egypt’s Protected Areas.
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with seeds that simply drop can disperse 1 km, basing our
judgments on the descriptions in Boulos (1999-2005) (see
Cain et al. 2000). From these figures we calculated the a
values (Moilanen et al. 2014) using grid-cell units (2.5 arc-
minutes, 0.0416�, about 4.6388 km):

a ¼ 2

Dispersal distance in kmð Þ� 0:0416
4:6388

� �

When ’no dispersal’ was the assumption, all a values were
set to zero (see Moilanen et al. 2014; for more details about
the procedure, see Supplementary Figure S22).

Species were weighted by multiplying together scores
representing national assessments of conservation status
(IUCN assessments: Kaky and Gilbert 2017), the relative
importance of Egypt’s populations (world distribution), and
the distribution of the species within Egypt (see
Supplementary Table S2).

Human impacts were assessed using a ’cost layer’. Two
types were used, the Human Influence Index (HII) for the
years 1995–2004 (Figure 1a) and population density per km2

in 2015 (Figure 1b), both downloaded from the
Socioeconomic Data and Applications Centre (SEDAC)
(Center for International Earth Science Information
Network—CIESIN—Columbia University, 2016). The former
was created from nine other layers covering human popula-
tion density, land use and infrastructure (built-up areas,

night-time lights, land use/land cover), and human access
(coastlines, roads, railroads, navigable rivers) (WCS 2005). For
the HII layer we first reweighted the buffer around the roads
to be zero, and then added a new buffer of 5 km to the
main roads only, because after discussion with experts expe-
rienced with Egyptian conditions, the original 15-km buffer
was not suitable for Egypt (Figure 1a). These cost layers were
used unaltered for the future scenarios because we have no
predictions available for the way in which either will change
in the next 60-odd years. Both were used as a cost layer
with the abf removal rule, to give low priority to areas with
high human influence. As recommended (Moilanen et al.
2014), both were used as a mask layer with the caz removal
rule, with a threshold below which pixels are available for
use by Zonation.

Each Zonation output file ranks each pixel between 0
(low) and 1 (high) conservation value. Cells >0.7 were
regarded as important locations for conservation planning.
The distribution of the PA network (Figure 1c) was compared
with these important locations visually and quantitatively for
their effectiveness in conserving plants under the impact of
future climate change. Designed by local biodiversity experts,
PAs currently cover about 15% of Egypt’s land surface (El-
Gabbas et al. 2016), all established since 1983 (Newbold
et al. 2009). Zonation allows an assessment of the proportion
of species protected for given proportion of the land

Figure 2. Conservation prioritization ranked values using the ‘Additive Benefit Function’ removal rule for current and future scenarios assuming unlimited dispersal
without using cost layers. The colors run from red (high) to blue (low) conservation value.
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conserved. We set the target as protection of 20% of the
land, and compare each scenario and set of assumptions on
the basis of the proportion of species protected.

Pixels were placed inside each PA and within a 50-km
buffer around each PA, allowing a comparison of the mean
conservation value inside and outside each PA. The mean
Zonation scores for the chosen areas inside and outside each
PA were obtained for each combination of scenario (A2, B2),
year (current, 2020, 2050, 2080), dispersal (unlimited, no-dis-
persal), cost (no-cost, HII, population density) and zonation
setting (abf, caz). The paired difference inside-outside each
PA was calculated, and this difference became the response
variable of a Generalise Linear Model (GLM) with normal
errors. In all, there were 2100 differences created.

Results

Under the assumption of unlimited dispersal, and using the
abf removal rule, the best areas for conservation were the
whole of Sinai, across the Mediterranean coast, the Suez Canal
area, and the Red Sea coast (Figure 2). The map implies that
by protecting 20% of the Egyptian territory, we can protect
about 63% of the medicinal plant species (Supplementary

Figure S9). With future climate change under both scenarios
A2a and B2a there were slight differences but the same areas
were identified as the best locations for conservation. The
maps again imply that by protecting 20% of the land, we can
protect from 53 to 60% (A2a) or 56 to 62% (B2a) of the plant
species (Supplementary Figure S9). Using the caz removal rule
but still with unlimited dispersal, the best locations were the
whole of Sinai, the Mediterranean coast, the Nile Delta, greater
Cairo, and the Red Sea coastal area (Figure 3). About 61% of
species are predicted to be conserved by protecting 20% of
the land (Supplementary Figure S10). There were few pre-
dicted differences in the future under climate change for
either scenario (Figure 3). 20% of the land was predicted to
protect 51–57% (A2a) or 54–59% (B2a) of medicinal plant spe-
cies (Supplementary Figure S10).

Under the no-dispersal assumption and using the abf
removal rule, similar areas were prioritized but the conserva-
tion values increased, and 20% of the land protected 82% of
the species (Supplementary Figures S1, S11). There were only
trivial differences predicted in the future scenarios
(Supplementary Figures S1, S11). Using the caz removal rule
gave similar results, with about 79% of species protected in
20% of the land (Supplementary Figures S2, S12), and slightly
higher conservation value under both scenarios for the Nile

Figure 3. Conservation prioritization ranked values using the ‘Core-Area Zonation’ removal rule for current and future scenarios assuming unlimited dispersal with-
out using cost layers. The colors run from red (high) to blue (low) conservation value.
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Delta and slightly lower for the Red Sea coast. 20% of the
land protected 81–83% across all scenarios (Supplementary
Figures S2, S12).

Using the HII cost layer changed the results dramatically.
Assuming unlimited dispersal and the abf removal rule, all
the coastal areas along the Mediterranean and the Red Sea,
the main cities of Cairo, Fayoum, Alexandria, and from Suez
to Ismailia, and entirety of the Nile Delta were removed
because they were poor for conservation (Figure 4). There
were no major differences between current and future times:
protecting 20% of the land was predicted to conserve only
about 34–36% of species (Supplementary Figure S13). Using
the caz removal rule the prioritization values increased across
Sinai, Farafra oasis (Figure 5). The top 20% of the land was
predicted to protect about 44–47% of the species under all
scenarios (Supplementary Figure S14). Using the population
density cost layer increased the Zonation rank scores signifi-
cantly, again with only slight differences among scenarios
and future times (Supplementary Figures S3, S4), and the top
20% of the land could protect 51–62% of the species
(Supplementary Figures S15, S16).

Using the HII cost layer with no dispersal and the abf
removal rule, the best areas for conservation were whole of
Sinai, Qattara Depression, Siwa oasis, and areas from south
of Ras Zaafarana to Halayeb excluding the Red Sea coastal

areas. There were only very small differences between the
current prediction and future scenarios in north Sinai and
the Red Sea coast, and the top 20% of the land could pro-
tect 50–55% of the species (Supplementary Figures S5, S17).
Using the caz removal rule gave similar results, with the
main differences among scenarios located around the
Qattara Depression and Siwa oasis, and protecting 20% of
the land could protect 54–55% of the species
(Supplementary Figures S6, S18).

Using population density as a cost layer with no dispersal
and the abf removal rule, the best areas for conservation in
all scenarios were the whole of Sinai, the Nile Delta, all the
Mediterranean and most of the Red Sea coasts, the Qattara
Depression, and areas around Halayeb, and the top 20% of
the land could protect 82–84% of the species
(Supplementary Figures S7, S19). Using the caz removal rule
gave similar results, but excluded the Nile Delta, while
including areas between Aswan to Lake Nasser, and south of
Kharga and Farafra oases. Again the top 20% of the land
could protect 71–75% of the species (Supplementary Figures
S8, S20). (Supplementary Figure S21 describes all the areas
and region names mentioned in this study).

Differences in conservation value between inside and out-
side PAs based on the final model showed significant effects
of the type of cost and of dispersal and their interaction

Figure 4. Conservation prioritization ranked values using the ‘Additive Benefit Function’ removal rule for current and future scenarios assuming unlimited dispersal
and using the Human Influence Index as a cost layer. The colors run from red (high) to blue (low) conservation value.
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(Table 1, Figure 6a). The average difference for most PAs was
positive, i.e. higher inside than outside (Figure 6b), but when
using the HII cost layer (Figure 6c) the many positive differen-
ces were outweighed by the large negative differences of
some PAs. There were no significant effects of climate-change
scenario (A2, B2) or removal rule of Zonation (abf, caz).

Discussion

These results highlight for the first time conservation plan-
ning for Egyptian plants under climate change while incorpo-
rating human socioeconomic impacts, a first at the national
scale for North Africa: most conservation planning studies in

the literature focus on Europe, North America, Oceania, and
South Africa (Kukkala and Moilanen, 2013). Our findings sup-
port the idea that socioeconomic data have a vital role in
conservation planning, because they make a huge impact on
planning advice. Land-use, opportunity costs and socio-eco-
nomic data have all been used before in conservation priori-
tization process (Moilanen et al. 2011; Schmitz et al. 2012; Di
Minin et al. 2017). We wanted to choose the best areas for
conservation taking into account land suitability and the
effect of human activities to reduce the conflict
between these.

Conservation planning using other Egyptian taxa (reptiles,
mammals and butterflies) has been implemented without
allowing for human activities (Leach et al. 2013; El-Gabbas
et al. 2016), and their results concur with our findings before
using any cost layer. Looking in detail at these results, many
of the locations chosen by Zonation to be a part of a net-
work of reserves are already occupied by the main cities,
building areas, coastal areas, and agricultural lands. The use
of the cost layer gave such areas low priority for conserva-
tion, thus avoiding conflict between conservation planning
and human activities (Moilanen et al. 2011; Faleiro et al.
2013; Di Minin et al. 2016): such areas also offer more threats
and fewer conservation opportunities than other locations
(Faleiro et al. 2013; Di Minin et al. 2017). This tool gives the

Figure 5. Conservation prioritization ranked values using the ‘Core-Area Zonation’ removal rule for current and future scenarios assuming unlimited dispersal and
using the Human Influence Index cost layer. The colors run from red (high) to blue (low) conservation value.

Table 1. Final model of a GLM analyzing the difference in Zonation score insi-
de–outside PAs (response variable) with various predictors; only significant
terms are left in the model.

ANOVA table

Deviance df df error F p

Final model
Dispersal 0.09 1 2072 6.38 <0.02
Cost 5.16 2 2072 192.87 <0.001
Pa 10.86 24 2072 33.83 <0.001
Dispersal: cost 0.1 2 2070 3.66 <0.03

�Non-significant predictors that were removed were scenario (current, A2, B2),
year (2020, 2050, 2080), and cell removal rule (abf, caz).
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applied conservation community the opportunity to choose
areas that are likely to be economically cheaper, and further-
more balance conservation planning and human activity. We
could not include land value in our analysis because of a
lack of information, but this would be useful to do to select
among the large areas indicated by our analysis (Naidoo
et al. 2006; Zhu et al. 2015).

Coping with climate change is a key issue in conservation
planning. Most such planning has been applied without any
consideration of climate change (Araujo et al. 2011), but this
is changing (Dawson et al. 2011) because the aim of estab-
lishing PAs is not just to maintain current geographical
ranges but also to protect species that change their distribu-
tions in the future. Linking this with allowing for human

Figure 6. Mean difference between inside and outside PAs for conservation values derived from Zonation analyses: (a) for different cost layers (human influence
index HII, population density Pop, and No-cost) and dispersal assumptions; (b) overall for each PA across all assumptions; (c) for each PA using the HII cost layer
and across all other assumptions.
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activities helps the scope of planning (Jones et al. 2016). For
Egypt, there were only slight differences in conservation pri-
oritization between the current state and future scenarios:
areas of high conservation value were very similar under
most assumptions. However, when human activity was
included, the priority areas for conservation changed sub-
stantially. Of course, this makes final conclusions about
future areas for conservation unstable, because any change
in the pattern of human activities in the future will affect the
prioritization pattern. Such scenarios are valuable for conser-
vation planning whether the results are optimistic or pessim-
istic (Hamann and Aitken 2013).

Dispersal ability is a key attribute for species to track cli-
mate change. When species can move easily over any dis-
tance, then almost any new locations in whatever pattern
will do, regardless of distance (Williams et al. 2005). Here, we
found that conservation prioritization values increase under
the no-dispersal assumption relative to unlimited dispersal,
and the proportion of species conserved by protecting 20%
of the land increased under no dispersal; this happened for
all assumptions and scenarios. This may be an artefact
because the no-dispersal assumption requires binarized
maps, where occupied cells all have equal value (1) and
hence there are no “core-areas” vital for the species
(Moilanen et al. 2014). For individual species the ranking pro-
cedure within Zonation creates artefacts, perhaps because
the smoothing function distributes value into surrounding
cells, which can be a problem if there are high peaks of
probability (as in binarized data). As a result Zonation may
prioritize areas with overall lower species richness, just
because they are well connected to other occurrences. There
is no evidence in the literature comparing unlimited and no-
dispersal maps as input for conservation planning using
Zonation, and hence we cannot compare our results with
those of others. However, all the evidence indicates that
under the no-dispersal assumption, species will lose more
suitable area under climate change (Ara�ujo et al. 2006), and
hence this will affect conservation planning (Kaky and Gilbert
2017). Therefore, although the results for ‘no dispersal’
appear more optimistic, those for unlimited dispersal (i.e.
using probability distributions) are probably more realistic.
These aspects require more work for clarification.

The Egyptian PA network covers about 15% of Egypt’s
land surface (El-Gabbas et al. 2016), a good ratio compared
to other countries. If no allowance is made for human activ-
ity, then the current PAs are well located to protect biodiver-
sity since the PA value excess is positive. This finding agrees
with other recent studies on different Egyptian taxa
(Newbold et al. 2009; Leach et al. 2013; El-Gabbas et al.
2016). However, when socioeconomic costs are included, and
more particularly the HII, the PA value excess became on
average negative since areas around some of the PAs were
ranked higher than inside, although there were substantial
differences among PAs. Mismanagement of PAs can lead to
loss species and failure to achieve conservation objectives
(Schmitz et al. 2017), because the effective management of
PAs is a key issue in mitigating biodiversity loss (Petrosillo
et al. 2010; Semeraro et al. 2016). There is an association

between increasing urban and industrial land use and the
creation of PAs for conservation planning and to protect cul-
tural landscapes (Arnaiz-Schmitz et al. 2018). However, sev-
eral studies show that PAs may not mitigate the accelerated
transformation of land uses, urbanization, and loss of land-
scape in urban-rural transitions (Schmitz et al. 2012, Amici
et al. 2015; Schmitz et al. 2017). By changing and transform-
ing land use, human activities lead to the loss of biodiversity
and effects on ecosystem services (Slemp et al. 2012;
Newbold et al. 2015). Urban expansion is one of the main
factors in land-use change, biodiversity loss, and habitat loss
(Newbold et al. 2015; Plieninger et al. 2016). For these rea-
sons, allowing for human activities by using a cost layer
changes substantially the optimal strategy in conserva-
tion planning.

In conclusion, our findings about PAs in Egypt support
the idea of including socioeconomic information such as the
HII in conservation planning. In assessing the best spatial
conservation priorities, theoretically the use of such cost
layers helps to decrease conflict between conservation and
human land-use. The results highlight many currently unpro-
tected locations that probably should be part of the
Egyptian network of reserves. Of course, other human factors
can play an important role in conservation planning, such as
the cultural landscape of sacred sites (Avtzis et al. 2018). The
limitations of our study were the lack of information about
changing patterns of human activity in the future, and the
availability of data for the same species outside Egypt in
neighbouring countries to make the species distribution
modelling more robust. More work is also needed on the
use of binarized distribution maps as input to
Zonation analysis.
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