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A B S T R A C T

Understanding the relationship between the geographical distribution of taxa and their environmental condi-
tions is a key concept in ecology and conservation. The use of ensemble modelling methods for species dis-
tribution modelling (SDM) have been promoted over single algorithms such as Maximum Entropy (MaxEnt).
Nevertheless, we suggest that in cases where data, technical support or computational power are limited, for
example in developing countries, single algorithm methods produce robust and accurate distribution maps. We
fit SDMs for 114 Egyptian medicinal plant species (nearly all native) with a total of 14,396 occurrence points.
The predictive performances of eight single-algorithm methods (maxent, random forest (rf), support-vector
machine (svm), maxlike, boosted regression trees (brt), classification and regression trees (cart), flexible dis-
criminant analysis (fda) and generalised linear models (glm)) were compared to an ensemble modelling approach
combining all eight algorithms. Predictions were based originally on the current climate, and then projected into
the future time slice of 2050 based on four alternate climate change scenarios (A2a and B2a for CMIP3 and RCP
2.6 and RCP 8.5 for CMIP5). Ensemble modelling, MaxEnt and rf achieved the highest predictive performances
based on AUC and TSS, while svm and cart had the poorest performance. There is high similarity in habitat
suitability between MaxEnt and ensemble predictive maps for both current and future emission scenarios, but
lower similarity between rf and ensemble, or rf and MaxEnt. We conclude that single-algorithm modelling
methods, particularly MaxEnt, are capable of producing distribution maps of comparable accuracy to ensemble
methods. Furthermore, the ease of use, reduced computational time and simplicity of methods like MaxEnt
provides support for their use in scenarios when the choice of modelling methods, knowledge or computational
power is limited but the need for robust and accurate conservation predictions is urgent.

1. Introduction

Understanding the relationship between a species or community
and its environment is a key concept in ecology and conservation. The
use of species distribution models (SDMs) for this purpose has advanced
the understanding of many ecological issues and is a key tool in pre-
dicting species responses to environmental change (Elith et al., 2006;
Elith and Leathwick, 2009; Norberg et al., 2019; Zimmermann et al.,
2010). The ability of SDM to make predictions into new spatial areas or
future time periods facilitites a wide range of ecological applications
including predicting habitat suitability under alternate climate change
scenarios (Dormann et al., 2007; Hijmans and Graham, 2006; Pearson
and Dawson, 2003), assisting with conservation and management plans
(Engler et al., 2004; Zhang et al., 2012) and investigating key issues in

related disciplines such as paleobiology (Svenning et al., 2011), tax-
onomy (Kharouba et al., 2013) and biogeography (Guisan et al., 2006).

SDM has traditionally been focused on single-species presence data
(Elith et al., 2006; Liu et al., 2011; Thuiller, 2003), but recent emphasis
on the importance of community and biotic interactions in SDMs has
propelled multi-species SDMs such as stacked SDMs (S-SDMs) or joint
SDMs (J-SDMs) to the forefront of distribution modelling (Baselga and
Araújo, 2009; Elith and Leathwick, 2009; Norberg et al., 2019). S-SDMs
are more established than J-SDMs: they involve fitting models for in-
dividual species and then combining model predictions to create esti-
mates of species richness (Benito et al., 2013; Guisan and Rahbek,
2011). In contrast, J-SDMs model a whole community of species at
once, and then subsequently create predictions (Pollock et al., 2014;
Warton et al., 2015). Although criticised for over-predicting species
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richness (Guisan and Rahbek, 2011), when correctly fitted using ap-
propriate thresholds for converting predictions into binary maps, S-
SDMs can provide accurate, low-error model predictions (Benito et al.,
2013; Calabrese et al., 2014) which have been shown to perform better
than direct community modelling methods (Ko et al., 2016) due to their
ability to capture variation in individual species-environment associa-
tions.

A wide range of SDM methods have been developed for the purpose
of predicting species occurrences based on environmental character-
istics (Thuiller et al., 2003; Elith and Leathwick, 2009; Norberg et al.,
2019). Commonly used algorithms include generalised linear models
(GLM) and generalised additive models (GAM) (Guisan et al., 2002;
Hastie and Tibshirani, 2004), maximum entropy modelling (MaxEnt)
(Elith et al., 2011; Phillips et al., 2006), random forests (rf) (Evans
et al., 2011; Svetnik et al., 2003), boosted regression trees (brt) (De'ath,
2002), and other machine learning methods such as artificial neural
networks (ANN) (Zurada, 1992) or Bayesian heirarchical modelling
(Hefley and Hooten, 2016; Latimer et al., 2006). Many of these methods
can be easily implemented simultaneously in statistical packages and
programmes, and in general, the most popular tools have the more
accessible and simple interfaces (Jarnevich and Young, 2015; Merow
et al., 2013; Norberg et al., 2019).

MaxEnt in particular is heavily favoured in the scientific commu-
nity. It can be implemented in a variety of packages in R including ‘sdm’
(Naimi and Araújo, 2016), ‘dismo’ (Hijmans et al., 2017) and ‘EN-
MTools’ (Warren et al., 2010), or models can be fitted using freely
available, simple and user-friendly independent software programs
such as ‘ENMTools’ and ‘MAXENT’. All of these programs or packages
allow many parameters to be manually determined by the user but also
offer robust, well-researched default values for accuracte species dis-
tribution models (Phillips and Dudík, 2008). MaxEnt benefits from its
ability to model presence-only (PO) data (Elith et al., 2006; Phillips
et al., 2006) and is thought to be robust to small sample sizes (Kaky,
2020; Kaky and Gilbert, 2016; Wisz et al., 2008), as well as being able
to model complex, non-linear relationships between the response
variable and predictors (Elith et al., 2006). Yet it is the ease and sim-
plicity of its implementation that has propelled MaxEnt to be the most
prominent, widely-used SDM technique in scientific research
(Fitzpatrick et al., 2013; Fourcade et al., 2014; Hijmans and Elith,
2013). MaxEnt models have been critised for being incorrectly applied
and oversimplified (Morales et al., 2017; Yackulic et al., 2013), and to
have produced overfitting models (Halvorsen, 2013; Merckx et al.,
2011). Nevertheless, MaxEnt continues to be frequently used to fit
models across many different taxa, geographical areas, time periods and
environmental scenarios.

The choice of the most appropriate SDM method out of the large
number of algorithms available for a particular organism or community
has received much attention. Many studies have compared SDM per-
formance for both single and multiple species (Beaumont et al., 2016;
Bucklin et al., 2015; Elith et al., 2006; González-Irusta et al., 2015), but
there is still a lack of consensus on the best choice of model (Norberg
et al., 2019). Suggested sources of uncertainty in predictions include
the SDM method, choice of predictor variables, spatial distribution and
sample size, all of which can impact model accuracy and predictive
power (Austin and Niel, 2011; Buisson et al., 2010; Edwards et al.,
2006; Segurado and Araújo, 2004). Proposals to aid the process of
model selection and fitting include model comparisons for specific
scenarios e.g. fitting a small number of models within a cross-validation
framework (Norberg et al., 2019) or ensemble modelling methods
combining individual models to create one predictive output (Marmion
et al., 2009; Thuiller et al., 2004).

Ensemble modelling (also known as consensus modelling or en-
semble forecasting) has been gaining momentum in SDM over the past
decade, and involves combining predictions from single SDM models
into one predicted binary map, usually based on the average model
predictions weighted by an evaluation metric e.g. AUC (Araújo and

New, 2007; Marmion et al., 2009; Thuiller et al., 2004). By combining
all models, the ensemble model theoretically should produce more ac-
curate and robust predictions than any single model (Marmion et al.,
2009). Ensemble modelling has been shown to improve model predic-
tions (Grenouillet et al., 2011; Oppel et al., 2012; Stohlgren et al.,
2010), reduce overfitting when modelling rare species (Breiner et al.,
2016), and has been advocated as a better alternative to single models
for future climate projection modelling with large numbers of species
(Araújo and New, 2007). Nevertheless there is still uncertainty in the
performance of ensemble modelling; model performance is heavily in-
fluenced by the choice of the initial SDM models used for averaging
(Araújo et al., 2005; Diniz-Filho et al., 2009). Furthermore, if ensemble
modelling performs only a little or no better than the best-performing
model, there is a strong case for choosing the single model; computation
time, model complexity and unnecessary variation introduced from
weaker performing models can all be reduced.

The aim of this study is to assess the comparative performance of
ensemble forecasting and other common SDM techniques, particularly
MaxEnt, for investigating the distribution of Egyptian medicinal plant
species under four different future climate change scenarios.
Developing countries such as Egypt often have a large number of
medicinal plant species, both traditionally cultivated and wild, that are
still relied upon today to treat a wide variety of diseases (Batanouny
et al., 1999; Mahmoud, 2013). As with many other plant species,
medicinal plants are expected to undergo life-cycle changes and dis-
tribution shifts associated with climate change (Khanum et al., 2013; Yi
et al., 2016; Zhang et al., 2018; Zhao et al., 2018), but their global
ecological and commercial interest and value increases the urgency
with which we need to understand their population changes to mitigate
potential losses (Das et al., 2016; Gairola et al., 2010). Egypt has re-
latively well documented medicinal plants with a broad spatial cov-
erage collated by the Biodiversity Monitoring and Assessment Project
(BioMap), which provides an excellent opportunity to explore the in-
fluence of climate change on future medicinal plant distributions, with
high potential value for conservation and land management. Ad-
ditionally it allows evaluation of the suitability of ensemble forecasting
and other SDM methods when using a S-SDM approach to generate
predictive maps of medicinal plant species richness across Egypt.

The main objectives of this study are to a) compare the performance
of ensemble and single-algorithm SDM methods; b) produce accurate
maps of the current distribution of medicinal plants in Egypt; and c)
evaluate the impact of various projected climate-change scenarios on
these distributions, with a particular emphasis on Egypt's Protected
Areas (PAs) for conservation purposes.

2. Methods

2.1. Study area and occurrence localities

Egypt occupies the north-eastern region of the African continent,
with a surface area in excess of one million square kilometres (in rea-
lity: 1,019,499 km2) (Hoath, 2003), or approximately 3% of the entire
area of the African continent (Baha-El-Din, 2006). It lies between lati-
tudes 32° to 22° N and longitudes 24° to 37° E, and is roughly a square
with each side of length 1000 km. To a great extent it is continuous with
the hyper-arid areas of the Saharan desert, with a hot and almost
rainless climate: the temperature can vary between −4 and 53 °C. The
Sahara has low relative humidity and is the most extensive region in the
world with in excess of 10 h of daylight for every day of the year (Baha-
El-Din, 2006). Normal average yearly precipitation across Egypt is less
than 80 mm, ranging from 20 mm in the south to a maximum of
200 mm at the Mediterranean coast; there is basically no rain during
the summer (El-Nahrawy, 2011).

The data consist of location records of the medicinal plants of Egypt,
extracted from the Biodiversity Monitoring and Assessment Project
(BioMap) databases. These databases were compiled over four years
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(2004–2008) from systematic surveys, museum collections, private re-
cords, expedition reports and databases, and from the literature, with
the aim of collating all records of Egyptian fauna and flora to make
them available for analysis and research. BioMAP was funded by Italian
Debt Swap and formed part of the Nature Conservation Sector of the
Egyptian Environment Affairs Agency in Cairo. There are 124 medicinal
plant species in this database, with a total of 15,299 records, after fil-
tering and deleting all the records that have erroneous georeferencing,
are located in ambiguous locations, and duplicated points. We selected
114 species with 14,396 occurrence points (Fig. 1A), after discarding all
species with fewer than 10 records because these would result in
models with low accuracy (Baldwin, 2009; van Proosdij et al., 2015).
Plant nomenclature follows Boulos (1999-2005).

2.2. Current and future environmental data

Environmental predictors consisted of bioclimatic variables inter-
polated from climate data between 1950 and 2000, obtained from the
Worldclim dataset (Hijmans et al., 2005; http://www.worldclim.org).
We selected 19 initial environmental variables considered to indicate
current climate circumstances (Table 1). We chose a resolution of 2.5
arc-minutes (~5 km) for the predictors for two reasons: firstly because
this matched the level of accuracy of museum data; and secondly be-
cause the climate data were interpolated from a limited number of
weather stations in Egypt, all concentrated around the Nile Valley and
Delta - this spatial bias in the raw data results in interpolated estimates
that have larger-than-usual errors. A further reason for choosing a
larger resolution is that such macro-scale models are thought to max-
imise the impact of climate on species distributions, the underlying
assumption of the technique (Pearson and Dawson, 2003). The lack of
climate stations in the study region, and their highly biased distribu-
tion, are reasons to take extra care over the credibility and accuracy of
the results (Martínez-Meyer, 2005). Although climate data are most
commonly used in SDM, we acknowledge that our models lack alter-
native biotic influences such as population dynamics, species demo-
graphics and interactions that could improve the models (Urban et al.,
2016). Such information is usually not available across large-scale
macroecological models, and thus climate data are the best possible
predictors for the distribution modelling of multiple widespread spe-
cies.

Elevation data were also obtained from the SRTM Digital Elevation
Database version 4.1 [available at: http://www.cgiar-csi.org/data/
elevation. Relevant tiles were downloaded, united together, and
clipped to the borders of Egypt at resolution of 2.5 arc-minutes (for
more details, see El-Gabbas et al., 2016). There is collinearity among
the environmental variables, which can be a problem in any modelling
method, including species distribution modelling (Guisan et al., 2002).

To reduce multicollinearity among our predictors, the Variance Infla-
tion Factor (VIF) (Marquardt, 1970) implemented in the ‘usdm’ package
(Naimi and Araújo, 2016: R Development Core Team, 2014) was used
to exclude predictors with VIF values greater than 10. This reduced our
number of environmental predictors from 20 to 8 (Table 1).

Current distribution models for each species were projected into the
future time slice of 2050, using different scenarios from both Climate
Model Intercomparison Project CMIP3 and CMIP5. Future predicted
climate data for CMIP3 and CMIP5 were obtained from the
Intergovernmental Panel on Climate Change's (IPCC) 4th and 5th as-
sessment data (for more detail see http://cmip-pcmdi.llnl.gov/) taken
from the International Centre for Tropical Agriculture website (see
http://www.ccafs-climate.org/). We used data from the Global
Circulation Model (GCM) generated by the UK Hadley Centre for
Climate Prediction and Research (HadCM3) for two scenarios (A2a and
B2a) for CMIP3. The A2a and B2a scenarios (for more details see: the
IPCC special reports) used in this study have been regularly used in
climate-change assessments (Hannah, 2011). Both scenarios have dif-
ferent assumptions about the amount of CO2 emissions. The A2a
‘business as usual’ scenario expects that the level of CO2 emissions in-
creases without restriction because of the high growth rate in the
human population, not much technological development, expanded
land-use changes, and people being less environmentally aware. The
B2a ‘moderate mitigation’ scenario expects that the level of CO2 emis-
sion will not change much more than now, because human population
growth will be slower, with fewer changes in land-use, people are more
environmentally conscious, and there is increasing invention in tech-
nology (Saupe et al., 2011). Similarly, for CMIP5 we used two ‘re-
presentative concentration pathways’ (RCP 2.6 and RCP 8.5) generated
by the UK Hadley Centre for Climate Prediction and Research (Had-
gem2_es). RCP 2.6 characterises an optimistic prediction representing a
medium level of population growth, and very low greenhouse-gas
concentrations; while RCP 8.5 represents a pessimistic prediction
characterized by high population growth and high levels of greenhouse-
gas concentrations by the end of 2100 (Wayne, 2013).

2.3. Species distribution modelling

We fitted SDMs for each species using eight modelling algorithims
implemented in the ‘sdm’ package in R (Naimi and Araújo, 2016). These
were maxlike (Royle et al., 2012); generalised linear models (glm)
(McCullagh and Nelder, 1989); classification and regression trees (cart)
(Breiman et al., 1984); support vector machine (svm) (Vapnik, 1995);
boosted regression trees (brt) (Friedman, 2001); maximum entropy
(MaxEnt) (Phillips et al., 2006); mixture discriminant analysis (mad, or
fda) (Hastie et al., 1994; Thuiller, 2003); and random forests (rf)
(Breiman, 2001). The default implementations in the sdm package were

Fig. 1. A) Locations of occurrence records of medicinal plants Obtained from the Biodiversity Monitoring and Assessment Project (BioMap) databases (2004–2008)
used in this study. 14,396 occurrence records across 114 species are shown, having first excluded records from species with fewer than 10 occurences. B) Flow chart
of methodology used in this study in order to create and compare SDM predictions of habitat suitability and species richness of 114 medicinal plant species in Egypt.
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used (Naimi and Araújo, 2016). The data were presence-only, and
pseudo-absence data were generated using default sdm package (see
Naimi and Araújo, 2016), by randomly sampling 10,000 locations for
each species across the study area. This approach is standard for pre-
sence-pseudoabsence modelling (Elith et al., 2011), and the large
number of 10,000 points has been shown to result in high predictive
accuracy (Phillips and Dudík, 2008) see (Fig. 1B).

Models were evaluated using K-fold cross-validation with 10 folds
and 10 replications for each algorithm; for each replicate the data are
divided randomly into 10 folds, one of which is used to evaluate the
model calibrated using the other 9 folds (Peterson et al., 2011), so as to
give more precise projections (Elith et al., 2011). Model performance
was evaluated using two methods, a threshold-independent statistic -
the area under the curve (AUC) (Fielding and Bell, 1997), and a
threshold-dependent statistic - the true skills statistic (TSS) (Allouche
et al., 2006). AUC varies between 0 and + 1: an AUC score between 1.0
and 0.9 = excellent, between 0.9 and 0.8 = good, between 0.8 and
0.7 = fair, between 0.7 and 0.6 = poor, and between 0.6 and 0.5 = fail
(Swets, 1988). TSS scores vary between +1 and − 1, with a score close
to 1 indicating an almost perfect model, while close to zero or less than
zero indicates a model no better than random (Allouche et al., 2006).

Mean AUC and TSS across the 10 replicates of each algorithm across all
species were used to assess model performance. Additionally, the dis-
tribution maps for each individual species were summed to produce a
single map of species richness per method (Distler et al., 2015) using
ArcGIS 10.2.2 (see SI Fig. 1B).

We compared the current and the 2050 future predicted habitat
suitability under both CMIP3 (A2 and B2) and CMIP5 (RCP 2.6 and RCP
8.5) to show the areas important for conservation planning under all
scenarios. Each SDM fitted using the current climate data was projected
into the future climate scenarios. The mean habitat suitability was
calculated for each current and 2050 climate-model scenario across all
pixels, taken to indicate how suitable the average cell is rather than any
change in geographic range (e.g. habitat loss) (for more detail, see
Wright et al., 2016). To calculate the impact of the climate scenarios on
predicted habitat suitability, we measured the percent change in mean
habitat suitability [((future - current) /current)*100] (Wright et al.,
2016). We compared the eight modelling techniques with each other,
and the current with future scenarios, using Anova for each species.
Thus each species has 320 models (8 modelling techniques × 10 re-
plications × 4 emission scenarios). For a visual summary of the
metholodogy used, see Fig. 1B.

Table 1
Initial (all) and final (non-greyed) set of environmental variables used to build the models. Highlighted variables were rejected to reduce collinearity after applying
the Variance Inflation Factor (VIF) with a cut-off threshold of 10.

Variable Description
BIO1 Annual Mean Temperature

BIO2 Mean Diurnal Range (Mean of monthly (max temp - min temp))

BIO3 Isothermality (BIO2/BIO7) (* 100)

BIO4 Temperature Seasonality (standard deviation *100)

BIO5 Max Temperature of Warmest Month

BIO6 Min Temperature of Coldest Month

BIO7 Temperature Annual Range (BIO5-BIO6)

BIO8 Mean Temperature of Wettest Quarter

BIO9 Mean Temperature of Driest Quarter

BIO10 Mean Temperature of Warmest Quarter

BIO11 Mean Temperature of Coldest Quarter

BIO12 Annual Precipitation

BIO13 Precipitation of Wettest Month

BIO14 Precipitation of Driest Month

BIO15 Precipitation Seasonality (Coefficient of Variation)

BIO16 Precipitation of Wettest Quarter

BIO17 Precipitation of Driest Quarter

BIO18 Precipitation of Warmest Quarter

BIO19 Precipitation of Coldest Quarter

Altitude Altitude
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Finally, the sdm package was used to combine the distribution maps
using the “ensemble” function to produce consensus ‘ensemble’ maps
based on weighted AUC values (Naimi and Araújo, 2016). The mean
AUC and TSS for the ensemble maps were then calculated to assess their
predictive performance. The selected threshold for TSS was the one that
maximised both the True Positive Rate (TPR) and True Negative Rate
(TNR). ENMTools (Warren et al., 2010) was used to calculate the si-
milarity of the predicted habitat suitability between the best performing
models (MaxEnt and random forest) and the ensemble predictions for
current and all future climate scenarios. We used the similarity mea-
sures index introduced by Warren et al. (2008), namely Schoener's D
index (Schoener, 1968: for more details, see Warren et al., 2008;
Warren et al., 2010). This index ranges from 0 (no similarity) to 1
(complete similarity).

The mean species richness inside and outside each Protected Area
(PA) were calculated just for the ensemble technique and for MaxEnt, to
compare spatial conservation priority based on these two methods.
Eygpt has 30 PAs established since 1983, covering about 15% of the
land area (El-Gabbas et al., 2016). We created a 50-km buffer around
each PA, and calculated the mean predicted species richness across all
pixels inside each PA (‘inside’) and in the buffer (‘outside’). Where PAs
adjoin one another, we created one buffer around both to avoid any
conflict in calculating species richness. The paired difference inside-
outside was calculated for each PA, and the difference became the re-
sponse variable of a GLM with normal errors. Ideally, species richness
could be also compared inside and outside of Egypt in order to provide
a more robust picture of the distribution of medicinal plants in similar
regions. However, the lack of data for these species in surrounding
countries means only models for Egypt can be fitted.

3. Results

3.1. Model performance and variable importance

Predictive accuracies of all SDM algorithms were generally good
across all species in terms of both AUC and TSS, except for one species
Herniaria hirsuta which obtained a poor AUC and TSS score with svm
(Fig. 2, Table S1). The mean AUC varied between 0.798 (cart) to 0.927
(rf), and the mean TSS lay between 0.627 (cart) and 0.825 (rf) (Table
S1). MaxEnt and rf achieved the highest performance out of all eight
algorithms based on mean AUC and TSS values, while svm and cart had
the poorest performances. The total number of species with model
performances classified as excellent from their AUC values were 63%
and 79% for MaxEnt and rf respectively (Table S2). There is of course a
highly significant correlation between AUC and TSS across methods

(Fig. S1). The ensemble predictions produced the highest mean TSS
(0.830) compared to all the single algorithms, and the second highest
mean AUC (0.90) after rf. Although the ensemblemean TSS and AUC are
similar to those for MaxEnt and rf, the interspecific variation for the
ensemble predictions was much larger than either individual algorithm
(Fig. 2).

Variable importance in each model differed across modelling algo-
rithms (Fig. 3). Bio6 (minimum temperature of the coldest month), bio3
(isothermality), bio13 (precipitation of the wettest month), and altitude
were the most important predictors across all methods and species, but
bio6 was the most important in six of the SDM methods (maxlike, svm,
cart, brt, fda, and rf), while bio3 was the most important in two methods
(MaxEnt and glm).

Fig. 4 shows the change in mean habitat suitability between the
current and each of the future scenarios. It is obvious that there is
hardly any change for the RCP scenarios, whilst for the CMIP3 scenarios
the A2 scenario changes more than B2 (see Fig. 4). There were obvious

Fig. 2. Evaluation of algorithm performance based on Mean Area Under the
Curve (AUC) and True Skill Statistics (TSS) scores for eight SDMs approaches
(maxlike, glm, svm, MaxEnt, cart, brt, fda and rf) and for the ensemble maps
from all eight algorithms across all species.

Fig. 3. Number of times each predictor variable (symbols and colours) were the
most important variable fpr each of the separate SDM techniques.

Fig. 4. Percentage change in mean habitat suitability [((2050 future-current)/
current)*100] for the four climate change scenarios (A2a, B2a, RCP 2.6 and
RCP 8.5) compared to mean habitat suitability under the current climate across
all species using the ensemble modelling approach. The A2a ‘business as usual’
scenario expects that the level of CO2 emissions increases without restriction,
whereas the B2a ‘moderate mitigation’ scenario expects that the level of CO2
emission will not change much more than now (Hannah, 2011). RCP 2.6
characterises an optimistic prediction representing a medium level of popula-
tion growth, and very low greenhouse-gas concentrations; while RCP 8.5 re-
presents a pessimistic prediction characterized by high population growth and
high levels of greenhouse-gas concentrations by the end of 2100 (Wayne,
2013).
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and significant differences between modelling methods (Fig. 5).
The ensemble maps (Fig. 6) show slight differences in species rich-

ness between the current scenario and both CMIP3 and CMIP5 future
scenarios. Ensemble models predict in the current and future that all of
the Mediterranean Coast, Sinai Peninsula, and various areas of the Red
sea coast and eastern desert regions are of interest for conservation
planning under future climate change. In contrast, the spatial patterns
show differences between SDM methods, and between most SDM
methods and the ensemble technique (see Figs. S2 to S6). However,
these differences are only slight between MaxEnt (Fig. 7) and ensemble
(Fig. 6) under all assumptions (see Figs. S2 to S6). This is confirmed
using the quantitative comparison using Schoener's D index: there is
high similarity betweenMaxEnt and ensemble predictive maps (Table 2),
but this is much lower between rf and ensemble, and MaxEnt and rf.

Finally, we compared species richness inside and outside the
Egyptian PAs for theMaxEnt and ensemblemethods, using the difference
between inside and outside as a response variable in GLM. The results
show that there is no difference between the two methods (F1,
249 = 0.26, P = 0.61). The mean species richness inside is consistently
higher than outside, (t = 6.86, P < <0.001).

4. Discussion

In response to the need for SDMs (e.g. species conservation, con-
servation planning for climate change) many software programs and
approaches have been developed (Elith et al., 2006; Norberg et al.,
2019; Thuiller, 2003). Combining and averaging models using the en-
semble approach is thought to reduce model uncertainty and increase its
robustness in modelling species distributions accurately (Araújo and
New, 2007; Marmion et al., 2009; Thuiller, 2003). Nevertheless, our
results show that MaxEnt was independently able to perform and pre-
dict comparatively well against an ensemble approach that combined
many well-used, highly regarded algorithms to identify important areas
for the conservation of Egyptian medicinal plants. Such findings do not
necessarily imply that MaxEnt is a better technique than other ap-
proaches, and there are still cases where it is less appropriate (see

Guillera-Arroita et al., 2014). However, we propose that MaxEnt should
still be considered as one of the most reliable and accessible techniques
when modelling species distributions from incomplete data (Abdelaala
et al., 2019; Fois et al., 2018; Kaky and Gilbert, 2019b). We believe that
it can be applied easily to help with the issue of identifying important
conservation areas, especially in developing countries where con-
servation efforts are less extensive.

When modelling presence-only (PO) data, MaxEnt is a sensible first
option to consider. In this case study, MaxEnt generated similar habitat
suitability predictions (> 0.90) under current conditions and different
climate scenarios for the Egyptian landscape in comparison with the
ensemble approach (Table 2). This relative accuracy in comparison with
most of the other techniques within the ensemble approach is well
documented in other studies across different taxa, including terrestrial
and marine species (see Elith et al., 2006; Graham et al., 2008; Monk
et al., 2010; Reiss et al., 2011; Wisz et al., 2008). Thibaud et al. (2014)
suggested that MaxEnt outperformed traditional presence-absence ap-
proaches, but Guillera-Arroita et al. (2014) demonstrated that presence-
absence approaches such as GLM can predict well using small sample
sizes if properly analysed, emphasizing that presence-absence is a more
reliable approach because it uses evidence of species absence rather
than random background points. However, this does not change the
reality that MaxEnt is capable of generating spatial and temporal pre-
dictions of habitat suitability that are very informative, and similar to
those generated by ensemble forecasting under a variety of climate
scenarios.

It is strongly recommended to use presence-absence data when
available: they are known to perform better than presence-only data,
which normally contain some limitations which can limit model per-
formance (Elith et al., 2011; Zaniewski et al., 2002). However, based on
the results presented here, MaxEnt does not appear to be greatly in-
fluenced by these limitations (also see Baldwin, 2009). Here, we briefly
discuss some reasons in relation to our dataset that influenced MaxEnt
in generating robust spatial conservation predictions for Egyptian
medicinal plants (for more detailed explanations about MaxEnt, see
Phillips et al., 2006; Baldwin, 2009; Elith et al., 2011; Merow et al.,
2013).

The first key to MaxEnt's success is its regularization process to
avoid overfitting, especially when using small sample sizes (Baldwin,
2009; Merow et al., 2013; Phillips et al., 2006). MaxEnt is able to ex-
tract useful information successfully even from incomplete data, and
hence captures non-linear, complex interactions and relationships
(Baldwin, 2009; Merow et al., 2013; Phillips et al., 2006). Here, plant
species with variable numbers of records were accurately modelled,
showing that MaxEnt is not sensitive to variation in sample size (de-
tailed performance is discussed in Kaky and Gilbert, 2016). Secondly,
MaxEnt has been shown to be relatively insensitive to moderate sam-
pling bias (Baldwin, 2009; Phillips et al., 2006). In our study, despite
using all the available resources to collate species records, there are
signs of spatial bias (Fig. 1). Graham et al. (2008) found that MaxEnt
was one of the techniques not strongly influenced by spatial errors in
sampling. In this study, more than half of the plant species were clas-
sified as being modelled with ‘excellent’ accuracy (see also Kaky and
Gilbert, 2016, 2017, 2019a). Correction for sampling bias is not
straightforward (El-Gabbas and Dormann, 2017).

Correlative SDMs are sensitive to the chosen modelling techniques
(Araújo and New, 2007), hence variation among models is expected due
to their different assumptions and algorithms (El-Gabbas et al., 2016;
Marmion et al., 2009). Some SDM techniques can be described as “data-
hungry” in order to capture complex interactions and responses (Wisz
et al., 2008), yet they can perform very well if properly handled and
analysed (Guillera-Arroita et al., 2014), an advantage over MaxEnt
since they use presence-absence data. In this study, the final S-SDM
species richness maps of Maxlike and svm across current and different
climate changes scenarios show signs of over-prediction and under-
prediction, respectively. Random forests (rf) had the highest mean

Fig. 5. Mean habitat suitability across all species based on the current climate
and four predicted climate change future scenarios (A2a, B2a, RCP 2.6 and RCP
8.5). The A2a ‘business as usual’ scenario expects that the level of CO2 emis-
sions increases without restriction, whereas the B2a ‘moderate mitigation’
scenario expects that the level of CO2 emission will not change much more than
now (Hannah, 2011). RCP 2.6 characterises an optimistic prediction re-
presenting a medium level of population growth, and very low greenhouse-gas
concentrations; while RCP 8.5 represents a pessimistic prediction characterized
by high population growth and high levels of greenhouse-gas concentrations by
the end of 2100 (Wayne, 2013). Results are shown for each of the eight mod-
elling methods (brt, cart, fda, glm, maxent, maxlike, rf and svm) and for the
ensemble modelling method based on all of these methods. There were sig-
nificant differences betweenSDM methods (F8, 32 = 1142, P < 0.0001), but no
significant differences between current and future scenarios (F4, 32 = 1.960,
P = 0.1245).
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Fig. 6. Habitat suitability maps created using the ensemble modelling method for all Egyptian medicinal plant species (using stacked SDMs) under the current
climate and four predicted climate change future scenarios (A2a, B2a, RCP 2.6 and RCP 8.5). The A2a ‘business as usual’ scenario expects that the level of CO2
emissions increases without restriction, whereas the B2a ‘moderate mitigation’ scenario expects that the level of CO2 emission will not change much more than now
(Hannah, 2011). RCP 2.6 characterises an optimistic prediction representing a medium level of population growth, and very low greenhouse-gas concentrations;
while RCP 8.5 represents a pessimistic prediction characterized by high population growth and high levels of greenhouse-gas concentrations by the end of 2100
(Wayne, 2013).

E. Kaky, et al. Ecological Informatics 60 (2020) 101150

7



Fig. 7. Habitat suitability maps created using MaxEnt for all Egyptian medicinal plant species (using stacked SDMs) under the current climate and four predicted
climate change future scenarios (A2a, B2a, RCP 2.6 and RCP 8.5). The A2a ‘business as usual’ scenario expects that the level of CO2 emissions increases without
restriction, whereas the B2a ‘moderate mitigation’ scenario expects that the level of CO2 emission will not change much more than now (Hannah, 2011). RCP 2.6
characterises an optimistic prediction representing a medium level of population growth, and very low greenhouse-gas concentrations; while RCP 8.5 represents a
pessimistic prediction characterized by high population growth and high levels of greenhouse-gas concentrations by the end of 2100 (Wayne, 2013).
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accuracy across all techniques based on AUC and TSS (Fig. 2), with 79%
of species having excellent accuracy (Fig. S2). However, rf showed
lower similarity to the ensemble result than MaxEnt (Table 2).

Modelling species richness by stacking the habitat suitability maps
for individual species is an important conservation tool (Benito et al.,
2013; Distler et al., 2015), despite its tendency to overestimate species
richness (Algar et al., 2009). Distler et al. (2015) found that an S-SDM
approach produces similar richness patterns to macroecological mod-
elling. Using MaxEnt to generate individual SDMs and then stacking
them is an approach already used in the region and its surroundings
(see Alatawi et al., 2020; El-Gabbas et al., 2016; Kaky and Gilbert,
2016, 2017, 2019a, 2019b). Newbold et al. (2010) and Alatawi et al.
(unpubl. data) used MaxEnt to produce final S-SDM species richness
maps for reptiles to test model accuracy in Egypt and Saudi Arabia,
respectively: both studies showed good accuracy. In developing coun-
tries where less advanced statistical modelling techniques are being
used,MaxEnt presents itself as an easily applied and interpreted piece of
software, that uses a user-friendly interface, yet retaining confidence in
the accuracy of its predictions.

There is always uncertainty about choosing the best methods to
model species distributions (Elith and Graham, 2009). As a result, the
ensemble method was introduced as a better approach over a single-
technique model, because it increased the reliability of predictions
(Araújo and New, 2007; Marmion et al., 2009; Thuiller, 2003). In
reality, the ensemble approach has not caught on. Hao et al. (2019)
reviewed peer-reviewed papers between 2003 and 2016 that had ap-
plied the ensemble method implemented in BIOMOD, and found only
224 eligible papers, the majority of which were concentrated in Europe
and North America. In contrast, it is easy to find many thousands of
MaxEnt applications. We conclude that the utility and ease of use of
MaxEnt is the main reason that SDMs became an active research tool for
a variety of ecological and biogeographical conservation applications.

Besides using presence-only data for this study, we used only bio-
climatic variables as predictors, and it is certainly possible that the
distributions of the species are also influenced by other factors (biotic
factors, evolution, dispersal ability, etc.,). Not incorporating some of

these factors may have limited the accuracy of our models and hence
possibly the conclusions (Urban et al., 2016). However, the relevant
ecological information about Egyptian medicinal plants does not exist,
as with most of the world's species. Despite such unavoidable un-
certainties with model predictions, SDMs represent a useful macro-
ecological tool for exploring the dynamics of the relationship between
distributions and climate conditions (Pearson and Dawson, 2003;
Vasconcelos et al., 2012).

5. Conclusion

One last important note to point out is that we are not implying that
the ensemble approach is unreliable, and MaxEnt is a better alternative.
In our study the ensemble approach achieved a high mean accuracy
(AUC= 0.90, TSS = 0.83: Table S1). Our main aim was to demonstrate
that MaxEnt produces similar results, even for the various climate
scenarios (all scenarios had a similarity index> 0.90). Due to the fact
that i) not everyone can use advanced statistical modelling techniques,
especially in developing countries where it is not a common practice,
and ii) the majority of data from such localities are in presence-only
format, we believe that in these circumstancesMaxEnt is a better choice
over complicated, computationally intensive ‘black-box’ ensemble
models. MaxEnt can promote the cause of practical conservation much
more effectively.
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Table 2
Habitat suitability similarity (Schoener's D index) between MaxEnt, Random Forest (rf) and ensemble modelling approaches, calculated using ENMTools (Warren
et al., 2010).

MaxEnt

Current A2_2050 b2_2050 rcp2.6_2050 rcp8.5_2050

Ensemble Current 0.921542 0.909275 0.911555 0.90275 0.904857
A2_2050 0.905567 0.919812 0.909464 0.895025 0.89557
b2_2050 0.906476 0.907022 0.925331 0.900876 0.901757
rcp2.6_2050 0.917222 0.908953 0.91489 0.92312 0.916606
rcp8.5_2050 0.907904 0.902441 0.907234 0.904298 0.914236

rf

Current A2_2050 b2_2050 rcp2.6_2050 rcp8.5_2050

Ensemble Current 0.741582 0.735335 0.727987 0.745182 0.744010
A2_2050 0.739791 0.748183 0.735602 0.748802 0.745199
b2_2050 0.740507 0.741395 0.739552 0.749837 0.746721
rcp2.6_2050 0.725258 0.725871 0.718657 0.743619 0.735898
rcp8.5_2050 0.727335 0.726626 0.719102 0.739683 0.741501

rf

Current A2_2050 b2_2050 rcp2.6_2050 rcp8.5_2050

MaxEnt Current 0.738863 0.731071 0.727251 0.743195 0.741149
A2_2050 0.737395 0.740029 0.731214 0.744589 0.741611
b2_2050 0.738956 0.736786 0.735257 0.746950 0.744149
rcp2.6_2050 0.724908 0.722089 0.718025 0.740719 0.734573
rcp8.5_2050 0.725485 0.721590 0.718119 0.738081 0.737919
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