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Abstract
The increasing frequency and cost of zoonotic disease emergence due to global 
change have led to calls for the primary surveillance of wildlife. This should be fa-
cilitated by the ready availability of remotely sensed environmental data, given the 
importance of the environment in determining infectious disease dynamics. However, 
there has been little evaluation of the temporal predictiveness of remotely sensed 
environmental data for infection reservoirs in vertebrate hosts due to a deficit of 
corresponding high- quality long- term infection datasets. Here we employ two unique 
decade- spanning datasets for assemblages of infectious agents, including zoonotic 
agents, in rodents in stable habitats. Such stable habitats are important, as they pro-
vide the baseline sets of pathogens for the interactions within degrading habitats 
that have been identified as hotspots for zoonotic emergence. We focus on the en-
hanced vegetation index (EVI), a measure of vegetation greening that equates to pri-
mary productivity, reasoning that this would modulate infectious agent populations 
via trophic cascades determining host population density or immunocompetence. 
We found that EVI, in analyses with data standardised by site, inversely predicted 
more than one- third of the variation in an index of infectious agent total abundance. 
Moreover, in bipartite host occupancy networks, weighted network statistics (con-
nectance and modularity) were linked to total abundance and were also predicted by 
EVI. Infectious agent abundance and, perhaps, community structure are likely to in-
fluence infection risk and, in turn, the probability of transboundary emergence. Thus, 
the present results, which were consistent in disparate forest and desert systems, 
provide proof- of- principle that within- site fluctuations in satellite- derived greenness 
indices can furnish useful forecasting that could focus primary surveillance. In rela-
tion to the well- documented global greening trend of recent decades, the present 
results predict declining infection burden in wild vertebrates in stable habitats; but if 
greening trends were to be reversed, this might magnify the already upwards trend in 
zoonotic emergence.
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1  |  INTRODUC TION

Given the human and economic cost of infectious disease emer-
gences from wildlife reservoirs (Bernstein et al., 2022; Dobson 
et al., 2020; Häsler et al., 2013), the primary surveillance of infection 
risks from wildlife seems increasingly warranted. For this purpose, 
environmental variation should be a particularly valuable source of 
predictive information. This is due to the importance of the envi-
ronment in driving infection dynamics and to the ready availability 
of fine- grained, near- real- time, satellite- derived environmental mea-
surements on a global scale. Despite this potential, our ability to use 
satellite (remotely sensed) data to forecast temporal fluctuations in 
the pattern of infection in wild vertebrates is currently limited. In 
particular, the evaluation of candidate predictors is restricted by a 
lack of corresponding high- quality infection data time series (Becker 
et al., 2023; Wille et al., 2021). Here we employ two decade- spanning 
rodent infection datasets whose regular multiannual sampling regi-
mens make them uniquely suitable to assess whether remotely 
sensed environmental measurements have forecasting power for 
the abundance and structure of natural infectious agent communi-
ties. Crucially, such variation in the burden of infection (Plowright 
et al., 2017), and in infectious agent community structure (Bordes & 
Morand, 2009), might be expected to relate to infectious disease risk 
in wildlife, and thence to the risk of zoonotic or transboundary emer-
gence from wildlife reservoirs. The infection data time series we 
employ (described further below) are for broad multispecies infec-
tious agent assemblages in two different hosts occupying different 
biomes and have previously been extensively documented (Alsarraf 
et al., 2016; Behnke et al., 2000, 2001, 2004, 2008a, 2008b, 2019; 
Grzybek et al., 2015). For prediction, we specifically focus on the re-
motely sensed enhanced vegetation index (EVI; Huete et al., 2002), a 
measure of “greenness” reflecting primary production in plants (Sims 
et al., 2006). EVI is related to the widely used normalised difference 
vegetation index (NDVI) but corrects for atmospheric conditions 
and canopy background variations (Huete et al., 2002). Importantly, 
we expected primary production to be especially informative as it 
is likely to have an ultimate local causal influence on key proximal 
drivers of infection (Eby et al., 2023; Glass et al., 2002; King'ori 
et al., 2020; Parmenter et al., 1999; Xu et al., 2015). These proxi-
mal drivers could include host density (Santini et al., 2018) and host 
immunocompetence (Jackson et al., 2020), which are likely to be 
influenced by bottom- up trophic cascades (Parmenter et al., 1999) 
dependent on primary production. The causal influence of primary 
production might manifest itself, for example (and non- exhaustively), 
through the augmentation of food availability, increasing host abun-
dance and altering infection dynamics as a result. A similar process 
has been suggested to explain links between the El Niño Southern 
Oscillation and hantavirus outbreaks in the southwestern United 

States (Glass et al., 2002). Alternatively, diminished primary produc-
tion might result in food shortage, interference with host immune 
function and promotion of infectious disease transmission (Jackson 
et al., 2020).

Due to a deficit of high- quality long- term time series with regular 
sampling design, most efforts at predicting the burden of infection 
in natural systems through the remote sensing of vegetation state 
(or through otherwise measured correlates of vegetation state), are 
focussed on spatial variation (between sites) or within- year data. 
This has limitations for forecasting (i.e., predicting into the future) 
locally, which may be an important goal for surveillance. For exam-
ple, in the case of spatial studies, the determinants of spatial vari-
ation, although they might be extrapolated to predict longer- term 
temporal scenarios under land usage or climate change, may not be 
the same as the determinants of temporal variation on other scales. 
In particular, spatial designs may be uninformative for local temporal 
forecasting because drivers of temporal variation (perhaps including 
primary productivity) may be unrelated to important site- specific de-
terminants of infectious assemblages. The latter could, for instance, 
include the nature of the substrate, or the animal species present 
(Carlson et al., 2022; Stenseth et al., 2022). Moreover, in the case 
of within- year data, autocorrelation is problematical, as any regular 
seasonal variables will correlate at certain times of the year, given a 
certain time lag. In contrast, in the present study, we focus particu-
larly on long- term within- site between- year temporal variation, with 
sampling points at the same time of year. For this, we reasoned that 
if primary production (represented by remotely sensed vegetation 
measures) is a driver of temporal infection dynamics, then this will 
have a more detectable signal on a level playing field within sites and 
at the same phase point in the circannual cycle.

Previous studies on the environmental drivers of infection bur-
den in nature have also often only considered individual or limited 
groups of pathogen species, but a focus on wider species commu-
nities, as we adopt here, may provide more information. Thus, for 
analyses of abundance, an overall measure of abundance, grouped 
across the infectious agent community (e.g., via latent variables from 
multivariate analyses, or overall means of standardised abundance, 
as we use here) has advantages. Such a measure would tend to re-
flect overarching drivers (and not species- specific drivers) and also 
tends, in practice, to produce a well- conditioned variable for statis-
tical analysis (with a less skewed distribution), increasing sensitiv-
ity. Moreover, enumerating established individuals across complex 
communities, as we have carried out here, allows the analysis of 
the structure of those communities. This is relevant to our current 
focus on forecasting infection risk because host permissiveness to 
transmission may be determined by the manner of infectious agent 
community assembly due to the regulatory properties of interspe-
cific interactions (de Vos et al., 2017; Gotelli et al., 2017). Below 
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    |  3JACKSON et al.

we calculated structural metrics for bipartite networks (Dormann 
et al., 2008; Poulin, 2010) of host occupancy as these may affect the 
stability and regulation of communities (Delmas et al., 2019; Grilli 
et al., 2016; May, 1972).

Rodents, alongside bats, are the greatest reservoir for zoonotic 
infectious agents (Han et al., 2016; Luis et al., 2013). In the pres-
ent study, the rodent infection time series data that we employ 
include zoonotic agents such as Babesia (see Young et al., 2019) 
and Bartonella (see Krügel et al., 2022), although we would expect 
any community- wide responses observed to be the most inter-
esting from a general point of view. The present time series span 
the 2001– 2010 decade with multiple time points. This decade was 
claimed to be the warmest and fastest- warming decade in histori-
cal records until 2010 and to encompass major climate perturbation 
(WMO, 2013). The time series also represent very divergent rodent 
host- infectious agent systems in disparate biomes, and so consistent 
trends in both would point towards the existence of general, widely 
relevant, processes. Thus, one of the time series is for bank voles 
(Myodes glareolus) in the temperate zone, forested ecosystems of the 
Mazury Lake District in North- Eastern Poland. The other is for spiny 
mice (Acomys dimidiatus) in the subtropical desert, wadi ecosystems 
of the St Katherine Protectorate, South Sinai, Egypt. In both cases, 
the infection data consist of direct visual counts of infectious agents 
based on invasive sampling at autopsy and are likely to be more pre-
cise than indirect measurements featuring in many studies, such as 
serology, PCR diagnostics, or propagule counts in faeces. Uniquely, 
each of these contrasting time series has a regular, standardised 
sampling design that includes quantification of metazoan parasites, 
haemoparasites and haemopathogens and host biometric data. Each 
also has site replication of distinctive localities, sampled consistently 
through time points. Thus in practice, when data grouping is taken 
into account, this has allowed sufficient degrees of freedom to de-
tect overall association between site- level time point observations 
for infectious agent community metrics and vegetation indices de-
rived from remote sensing measurements.

In summary, in this study, using the datasets described above, 
we calculate an index of overall infectious agent abundance, as this 
would be expected to be linked to infection risk. (Here and below, 
we take infection risk to mean risk within the studied populations 
but also, ultimately, transboundary risk.) We additionally derive net-
work statistics for bipartite networks of host occupancy as these 
might contribute to infection risk through effects on community 
regulation and stability. Accounting for confounding variation, and 
standardising data within sites prior to analysis (i.e., converting the 
data to within- site anomalies), we ask whether any of these quanti-
ties are predicted by inter- annual EVI fluctuations within sites. Our 
findings suggest that site- standardised EVI is indeed substantially 
predictive of infectious agent abundance and network structure. We 
argue that this highlights the need for future work to understand the 
causal mechanisms involved and to further establish the practical 
potential for forecasting infection risk using EVI. We also point out 
that the associations we observed would predict a suppression of 
infection risk in stable habitats in recent decades, given worldwide 

greening trends (Zhu et al., 2016), but we note that this could be re-
versed in the case that greening trends are not maintained (Winkler 
et al., 2021).

2  |  MATERIAL S AND METHODS

2.1  |  Overview

In this study, we set out to assess the degree to which infectious 
agent abundance and community structure can be predicted by 
remotely sensed vegetation greenness. We employed long- term 
datasets for two contrasting rodent –  infectious agent systems with 
regular, site- replicated sampling designs and individual count data 
for a wide range of infectious agents. For these datasets, we cal-
culated overall indices of infectious agent abundance and network 
statistics for host occupancy networks. To represent greenness, 
we used the publicly- available EVI data product. Importantly, we 
reasoned that, within each host- infectious agent system, individual 
sites would be subject to many idiosyncratic site- specific constraints 
on infectious agent abundance and community structure, on the one 
hand, and on EVI, on the other, that might lead these to vary in-
dependently (obscuring any functional link). Such constraints might 
include, for example, faunal composition, habitat connectivity or 
substrate characteristics, in the case of infectious agents, or floral 
composition, soil composition or canopy structure in the case of EVI. 
On the other hand, within- site changes in vegetation greenness and 
infectious agents over time, upon a relatively level playing field for 
site- specific constraints, would be more likely to reveal a functional 
relationship between the two. Thus, crucially, in the analyses below, 
we standardised (zero mean, unit standard deviation) the infection 
variables and EVI within sites prior to linear statistical modelling.

2.2  |  The study systems

Infection data for this study are based on multi- year, late summer, 
sampling of bank voles (Myodes glareolus; Cricetidae) at three de-
fined sites in the Mazury Lake District in North- Eastern Poland and 
of spiny mice (Acomys dimidiatus; Muridae) at four defined sites in 
St. Katherine's Protectorate, Sinai, Egypt. The Polish sites, Urwitałt 
(53.80255, 21.663067), Tałty (53.894067, 21.550817) and Pilchy 
(53.7038, 21.808317; Behnke et al., 2001; Grzybek et al., 2015), in 
the Central European mixed forest ecoregion (Olson et al., 2001), 
were situated along an approximately northwest to southeast 27 km 
transect and were separated by physical barriers and habitat un-
suitable for bank voles. The sites were mainly forested (Behnke 
et al., 2001), featuring a mature canopy dominated by Pinus sylvestris 
and Betula verucosa, but also containing Picea abies, Quercus robur 
and Alnus glutinosa; shrub layers consisted mainly of Corylus avel-
lana and ground cover was primarily by Oxalis acetulosa, Convalaria 
mayalis, Stelaria holostea or moss. Small gladed areas occurred 
within the forests, dominated by grasses. The Egyptian sites, in 
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the Arabian desert ecoregion (Olson et al., 2001), were discrete 
montane wadi habitats at El Arbein (28.553440, 33.94796), Gebal 
(28.53342, 33.908398), Gharaba (28.64672, 33.88991) and Tlah 
(28.56452, 33.93682) situated within 12 km of St Katherine, South 
Sinai. The wadis are hyper- arid environments with sparse rainfall in 
December– February only. Natural vegetation cover is <10%, but the 
wadi floors are partly covered by oasis- like walled orchard gardens 
that employ rainwater harvesting to maintain a year- round presence 
of crop plants amongst which wild desert annual and perennial veg-
etation also grows (Norfolk et al., 2012, 2013, 2015).

2.3  |  Sampling

The three Polish sites were sampled in 1999, 2002, 2006 and 2010 
and the four Egyptian sites were sampled in 2000, 2004, 2008 and 
2012. The 1999 data fell before the availability of the remotely 
sensed data product used here (see below) and were thus not in-
cluded directly in the main analyses of data aggregated by site, al-
though they were included in supporting analyses of unaggregated 
individual host data. Sampling methods, and the respective compo-
sitions of the infectious agent communities, have been previously 
described for both the Polish bank vole and Egyptian spiny mice 
systems. In brief, for both systems, hosts were captured by humane 
live- trapping in a 3– 4 week trapping campaign starting in mid- August 
and killed and autopsied shortly after capture. For the Egyptian sites, 
sampling was based on a total of 52,076 trap hours (1838– 5244 per 
site × year combination) and for the Polish sites (for 2002– 2010) 
172,271 trap hours (9356– 34,363 per site × year combination). For 
the Egyptian spiny mice, the traps were placed along wadi floors, pri-
marily in and around walled gardens (Behnke et al., 2000). Biometric 
data (sex and weight) were recorded for hosts and, in the case of 
M. glareolus samples, order- level counts were made of ectoparasitic 
fleas (Siphonaptera) and ticks (Ixodida). For all samples, metazoan en-
doparasites occurring in the gastrointestinal tract or the body cavity 
were identified to species level and enumerated. In a very small mi-
nority of cases unidentified endoparasite specimens were placed in 
phylum- level categories. Haemoparasites (Babesia, Hepatozoon and 
Trypanosoma) and haemopathogens (Bartonella and Mycoplasma), 
identified to genus level, were quantified by microscopic counts of 
stages on peripheral blood smears. The Polish data set contained 21 
taxon groupings (2 arthropod, 3 protozoan, 2 bacterial, 8 nematode 
and 6 cestode) and the Egyptian dataset 26 taxon groupings (3 pro-
tozoan, 2 bacterial, 13 nematode, 7 cestode and 1 acanthocephalan).

For analysis of the Polish dataset, hosts with any missing infection 
or biometric data were excluded. Final sample size was 812 voles for 
the full Polish dataset (35– 97 per year × site combination, mean = 68) 
and 689 voles (56– 97 per year × site combination, mean = 77) when 
1999 data were excluded. For analysis of abundance in the Egyptian 
dataset, hosts with any missing data were excluded, giving a final 
sample size of 419 (6– 42 per year × site combination, mean = 26). For 
network analysis of the Egyptian dataset, only hosts with missing 
infectious agent data were excluded (as there were proportionately 

more missing biometric data in this dataset and these data were not 
used in the networks); sample size was 427 (11– 42 per year × site 
combination, mean = 27).

2.4  |  EVI data

Enhanced vegetation index (Huete et al., 2002) data (MOD13Q1 
data product; Didan & Huete, 2015) corresponding to spatial pol-
ygons for the study sites (see Table S1) were downloaded via the 
National Aeronautics and Space Administration (NASA) AppEEARS 
application (AppEEARS Team, 2023). MOD13Q1 data is derived 
from the Terra Moderate Resolution Imaging Spectroradiometer in-
strument for 16- day intervals at 250 m resolution and is based on 
atmospherically- corrected reflectance in the red, near- infrared and 
blue wavebands. EVI differs from the older, related NDVI metric 
by attempting to correct for atmospheric and background effects 
and may be superior in discriminating areas of high- density vege-
tation where NDVI saturates (Didan et al., 2015). The average EVI 
for 3 months of data prior to the month of sampling was employed 
for all analyses (see Table S2), as similar timeframes have been 
used in studies relating NDVI, or its correlates, to infectious agent 
populations (King'ori et al., 2020; Rubenina et al., 2021; Shearer & 
Ezenwa, 2020). EVI is widely accepted to capture vegetation phenol-
ogy and primary productivity variation in forest and grassland bio-
types (Fernández et al., 2016; Huete, 2012; Huete et al., 2002; Shi 
et al., 2017; Sims et al., 2006; Zhou et al., 2014), such as the Polish 
sites here, which were mainly gladed forests. EVI or NDVI have also 
been employed to monitor vegetation in hyper- arid environments 
(Chávez et al., 2019; Moat et al., 2021; Saltz et al., 1999; Wallace & 
Thomas, 2008; Wang et al., 2014), such as the Egyptian sites here, 
and also at other desert localities in the Sinai peninsula (Dall'Olmo 
& Karnieli, 2002). EVI variables for the present Egyptian sites had a 
clear seasonal fluctuation with, as might be expected if vegetation is 
represented, a nadir at the start of the rainy season.

2.5  |  An overall measure of infectious agent  
abundance

To calculate an overall index of infection abundance (total abundance 
index, TAI) for hosts within each of the two sample sets (Egypt and 
Poland) we first standardised the counts for each infectious agent 
taxon for all hosts in the sample set (zero mean, unit standard devia-
tion) and then summed the standardised counts for each host:

where n = the number of hosts in the sample set, p = the number of 
infectious agent species in the sample set, X = abundance of the jth  
infectious agent species in the ith host, μ = mean abundance for the 
jth infectious agent species in the host population and δ = the standard 

TAI� =

p
∑

j=1

∑n

i=1

X − �

�
,
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deviation for abundance of the jth infectious agent species in the host 
population.

Within each sample set the distribution of the resulting index 
was less skewed than the individual infectious agent variables but 
still non- normal, so the index variable was rescaled 1– 101 and a log 
transformation was applied (where max is the maximum value for 
TAI′, and min is the minimum value):

2.6  |  Network statistics

Network analyses were carried out in R version 4.2.1 (R Core 
Team, 2022). The bipartite package (Dormann et al., 2008) was em-
ployed to construct a separate weighted bipartite network for each 
site × year dataset, joining individual hosts and infectious agent 
taxa, where edge weights corresponded to the log2 (x + 1) trans-
formed raw infectious agent counts. Weighted network statistics 
(modularity, connectance and nestedness) were calculated for each 
network (Dormann et al., 2009). Modularity, connectance and nest-
edness were selected as they have been linked with community sta-
bility or regulation in the literature (Delmas et al., 2019; Poulin & 
McDougall, 2022). Weighted modularity (Q) reflects the weight of 
edges inside modules compared to outside modules, where a mod-
ule is defined as an edge- rich cluster within a community (Dormann 
& Strauss, 2014). Weighted connectance reflects the weights of re-
alised relative to possible edges in a network (Bersier et al., 2002). 
Weighted nestedness is the tendency for edges of a given node to 
form a subset of the edges of nodes of higher degree (i.e., nodes 
with more edges), taking the weight of edges into account. The 
weighted nestedness measure used here increased with nestedness 
and was calculated following the WNODF (Weighted Nestedness 
metric based on Overlap and Decreasing Fill) method (Almeida- Neto 
& Ulrich, 2011).

2.7  |  Statistical modelling of abundance and 
network metrics in relation to EVI

Linear model analyses were carried out in R version 4.2.1. TAI (unad-
justed for host intrinsic variables) and EVI means were calculated for 
each site × year sampling point and were standardised within sites 
for both sample sets, using the scale_by function in the standardise 
library (Eager, 2017). This effectively converted the TAI and EVI data 
into anomalies or deviates from the within- site mean. The Egyptian 
and Polish sampling point anomalies were then concatenated 
(stacked) into a single dataset, and the TAI anomalies were analysed 
as the response in a linear mixed model with Gaussian errors (LMM) 
(lmer function in the lme4 package; Bates et al., 2015), using all of the 
data, with the EVI anomaly included as a fixed explanatory variable 
and year (factor) included as a random intercept effect to account for 
year grouping. A site random term was not included as the variance 
for this would be zero due to the within- site standardisation of the 

TAI data, which allowed interpretation of model coefficients in terms 
of standard deviation units for the response and fixed predictors 
(and reanalysis with unstandardised EVI data and random intercepts 
for the site provided similar interpretations). We repeated the above 
analysis, in turn replacing TAI with each of the network statistics de-
scribed above, Weighted modularity Q, Weighted connectance and 
Weighted nestedness, and additionally including site- standardised 
host sample size as a fixed explanatory variable. We then further 
considered the addition of (site- standardised) TAI, as an explanatory 
variable, to the models for the network statistics.

Secondary analyses of abundance, based on mean raw counts, 
were also carried out for phylum- level functional groups, where 
these were common to both host assemblages and occurred at all 
sites. These analyses were conducted in LMMs of the form described 
above that had TAI as the response, using site- standardised data.

Infection abundance in individual taxa has been extensively  
analysed previously in the present study systems (Alsarraf et al., 2016; 
Bajer et al., 2001, 2005; Behnke et al., 2000, 2001, 2004, 2008a, 
2008b, 2019; Grzybek et al., 2015; Siński et al., 2006a, 2006b) and 
may be influenced by intrinsic host variables, which is not taken into 
account in the analysis of TAI above. Using standard linear models 
(see Tables S3 and S4; lm base function), applied to each dataset sep-
arately, we confirmed that individual TAI was (positively) influenced 
by body weight in both datasets (host body weight was the strongest 
intrinsic predictor of TAI in both datasets, compared to host sex) and 
that sex was important in the Egyptian dataset. To take the effect 
of these intrinsic variables into account, we generated random inter-
cepts for site × year sampling points in an LMM (Gaussian errors) (lmer 
function in the lme4 package) with individual TAI as the response and 
with fixed terms for body weight (continuous), sex (factor) and site 
(factor) and random intercepts for site × time point (Tables S5 and S6). 
Random intercepts were extracted from this model (ranef function in 
lme4) and effectively represent TAI site anomalies around the fixed 
site term, adjusted for host weight and sex by the fixed terms for 
these. We then re- standardised the random effects to convert the 
TAI anomalies to standard deviation units and analysed them as for 
unadjusted TAI above, with this analysis effectively negating any vari-
ation due to weight and sex.

Variation due to different model terms in LMMs was quanti-
fied using the calcVarPart function in the variancePartition library 
(Hoffman & Schadt, 2016).

2.8  |  Trap rate

Trap rates (captures per trap hour), such as those available in this 
study (Table S7) can be used as a relative abundance index (Skalski 
et al., 2005) for the host, although this is complicated by the possi-
bility of systematic variation in the capture probability for individu-
als, which cannot be estimated from the available data. Although 
estimating host abundances was not a primary focus here, we have 
employed trap rate as a crude proxy for host abundance in some 
secondary, indicative, analyses. These analyses, relating trap rate to 

TAI = log10

(((

TAI� −min

max −min

)

100

)

+ 1

)

.
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6  |    JACKSON et al.

TAI and EVI, were conducted in LMMs of the form described above, 
using site- standardised data.

3  |  RESULTS

3.1  |  Site- standardised EVI substantially inversely 
predicted an index of overall infection burden (total 
abundance index, TAI)

The structure of our dataset is described in detail in Section 2. 
Briefly, analyses below were based on at least 1108 hosts (depend-
ing on missing data values) from two sample sets (Egypt and Poland) 
comprising 7 sites and a total of 25 site × time point replicates span-
ning 2000– 2012. For hosts within each sample set (A. dimidiatus in 
Egypt and M. glareolus in Poland) we constructed a TAI by summing 
standardised counts for all infectious agents (see Section 2 for de-
tails). In a combined analysis of the sample sets, where variables were 
standardised within sites, EVI significantly inversely predicted TAI 
when analysed in a linear mixed model (LMM) (slope = −0.65 ± 0.16, 
p = 5.1 × 10−4). This relationship explained more than one- third of 
the variation in TAI (Figure 1; 44% partitioned variance in the LMM). 
This was approximately maintained when TAI was adjusted for host 
sex and weight (slope = −0.54 ± 0.13, p = 4.1 × 10−4; 36% partitioned 
variance; see Section 2 for details). The crude trend was also con-
sistent in the two sample sets (Poland, Pearson r = −.70; Egypt, 
r = −.73; for site- standardised data; see Figure 1). A crude proxy 
for host abundance (trap rate) only weakly predicted TAI (LMM, 
slope = −0.27 ± 0.13, p = .051; 6% partitioned variance) and was  
unrelated to EVI.

To decompose the effect of EVI on overall infection burden, we 
carried out post hoc analyses of mean total counts at site × time 
sampling points, broken down by phylum- level functional groups, 
where these were common to both host assemblages and occurred 
at all sites. This included gastrointestinal nematodes, Hepatozoon 
parasitaemia, Bartonella bacteraemia and Mycoplasma bacter-
aemia. There were strong inverse associations with EVI for gas-
trointestinal nematodes (LMM, slope = −0.56 ± 0.17, p = .0037) 
and Mycoplasma (slope = −0.77 ± 0.14, p = 9.4 × 10−6) the only two 
groups present in all time × sites sampling points, and there were 
non- significant but negative trending associations for Bartonella 
and Hepatozoon (see Figure 2).

3.2  |  EVI predicted connectance and modularity in 
host occupancy networks

We calculated weighted network metrics (connectance, modular-
ity and nestedness) to describe variation in structure in bipartite 
host occupancy networks for the infectious agent community at 
each site × year sampling point. Adjusting for host sample size, 
we found that weighted modularity increased with EVI (LMM, 
0.58 ± 0.18, p = .006; 30% of partitioned variance) and decreased 
with TAI (−0.78 ± 0.14, p = 8.4 × 10−6; 57% of partitioned variance) 
(Figure 3), with EVI explaining no further variation when added to 
a model already containing TAI. Weighted connectance, in con-
trast, decreased with EVI (−0.54 ± 0.18, p = .005; 25% of partitioned 
variance) and increased with TAI (0.66 ± 0.16, p = .001; 45% of 
partitioned variance) (Figure 3), with EVI again explaining no ad-
ditional variation when added to a model already containing TAI. 
Thus, weighted connectivity and modularity, which were strongly 
inversely associated (Pearson r = −.87 for unstandardised data and 
−.78 for site- standardised data) (Figure 3), varied as effective prox-
ies of TAI. Weighted nestedness (adjusted for sample size) was un-
related to EVI or the other network statistics, although it decreased 
with TAI (−0.57 ± 0.21, p = .014). None of the network statistics 
were related to the trap rate.

4  |  DISCUSSION

We have found that site- standardised remote- sensed vegetation 
indices are able to inversely predict a substantial amount (more 
than one- third) of the within- habitat variation in an index of over-
all infection burden over time in two geographically distinct natural 
rodent host- infectious agent systems. The vegetation indices em-
ployed were based on the enhanced vegetational index (EVI) that 
was standardised (i.e., centred and expressed in standard deviation 
units) for individual sites. The trend was consistent across the two 
disparate study areas (Egypt and Poland) and was maintained in the 
phylum- level pathogen groups universally occurring in all spatiotem-
poral sampling points. Moreover, we found that site- standardised 
EVI additionally predicted variation in infectious agent community 

F I G U R E  1  Association between total abundance index, 
reflecting overall infection burden, and enhanced vegetation index, 
reflecting primary productivity in the quarter before sampling. 
Based on a linear mixed model run with site- standardised data. 
Shown are the predicted effect (solid line) with 95% confidence 
limits (dashed lines) and partial residuals for site × year sampling 
points. EVI, enhanced vegetation index; TAI, total abundance index.
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    |  7JACKSON et al.

structure, although only where this was a direct surrogate of overall 
abundance.

Many previous studies have found that environmental vari-
ables, including those measured through remote sensing, may 

predict infectious agent populations or communities (Blersch 
et al., 2021; Carlson et al., 2022; Clark et al., 2020; Fecchio 
et al., 2020; Froeschke et al., 2010; King'ori et al., 2020; Kosoy 
& Biggins, 2022; Krasnov et al., 2010, 2021; Pauling et al., 2021; 

F I G U R E  2  Association between abundance (mean raw counts) of phylum- level groups and enhanced vegetation index, reflecting primary 
productivity in the quarter before sampling. Based on linear mixed models run with site- standardised data. Shown are the predicted effects 
(solid lines) with 95% confidence limits (dashed lines) and partial residuals for site × year sampling points (black points, Egypt; grey points, 
Poland). EVI, enhanced vegetation index; GI, gastrointestinal.

F I G U R E  3  Variation in network statistics with the enhanced vegetation index, reflecting primary productivity in the quarter before 
sampling, and with total abundance index, reflecting overall infection burden. The four left- hand panels are based on linear mixed models 
run with site- standardised data; shown are the predicted effects (solid lines) with 95% confidence limits (dashed lines) and partial residuals 
for site × year sampling points (black points, Egypt; grey points, Poland). The right- hand panel shows the crude association between site- 
standardised weighted connectance and weighted modularity, with a least squares regression line shown for reference (black points, Egypt; 
grey points, Poland). EVI, enhanced vegetation index; TAI, total abundance index.
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8  |    JACKSON et al.

Shearer & Ezenwa, 2020; Vinagre- Izquierdo et al., 2022) or zoo-
notic infection risk (Carlson et al., 2022; Glass et al., 2000, 2002; 
Parmenter et al., 1999; Pauling et al., 2021; Redding et al., 2021). 
However, where these have focussed on vegetation predictors, 
or their correlates, in most cases between- locality variation or 
within- year variation has been studied, which may have limita-
tions. Thus, between- locality studies may be affected by spatial 
autocorrelation and confounding due to site- specific variation. 
Moreover, within- year studies may be affected by temporal  
autocorrelation, as any circannual (seasonal) variables will be  
autocorrelated at some time lag. In contrast, long term within- site 
between- year time series, such as we employ here, allow temporal 
variations in variables- of- interest to be considered on a relatively 
level playing field (i.e., on the same background of site character-
istics and phase point in the seasonal cycle), increasing the signal 
to noise ratio and avoiding autocorrelative effects. The present 
study is thus uniquely powerful in considering two multiannual, 
decade- spanning time series with regular site replication, allowing 
a within- site (“site- standardised”) approach to be employed.

From a practical point of view, the current study has, using a 
site- standardised approach, strengthened the proof- of- principle 
that remotely sensed vegetation spectra could provide substantial 
partial forecasting of infection levels, infectious agent community 
structure and infectious disease risks in natural vertebrate systems. 
Moreover, the temporally lagged nature of the effects we saw mean 
that useful forecasts could be made in real- time with lead- in time 
scales (weeks or months) that allow intervention. Such information 
could be generated with relatively little difficulty and cost given the 
high availability of many remote- sensing data. It could then, for ex-
ample, be combined with other sources of information on land use, 
human populations or animal and pathogen distributions and em-
ployed to prioritise local surveillance activity or preparedness ac-
cording to available resources. Whilst our study focussed on a wide 
range of haemoparasites (Protozoa) and haemopathogens (Bacteria) 
and metazoan parasites, we expect that other infectious agents, in-
cluding viruses, would respond to similar environmental pressures, 
as they are subject to similar constraints of transmission and host 
resistance.

Recording many different infections allowed a detailed analysis 
of community structure. We considered weighted infectious agent 
community network structure metrics, in addition to abundance, 
as these might reflect regulatory properties of a community relat-
ing to its stability and hence to change in infection risk. We found 
that some community network properties were strongly predicted 
by EVI, but in all cases, in practice, these were also surrogates for 
total abundance. Thus, in bipartite host co- occupancy networks, 
network modularity increased and connectance decreased as EVI 
increased (and as abundance decreased). Although modularity and 
connectance might be expected to scale passively with network size 
(Dormann et al., 2009; Dormann & Strauss, 2014), the associations 
with EVI were maintained when host sample size was adjusted for. 
Nestedness, which was unrelated to abundance, was also unrelated 
to EVI. To our knowledge, these are amongst the first observations 

to relate remotely sensed primary production to temporal variations 
in infectious agent community structure.

The direction of the trend in total abundance in relation to 
EVI that we observed raises important questions. In particular, 
infectious agent abundance might be predicted to increase with 
bottom- up productivity and its drivers, such as precipitation 
and temperature (Felton et al., 2021), due to the facilitated de-
velopment of larval stages or the amplification of host or vector 
populations (Arneberg et al., 1998; Mouritsen & Poulin, 2002). 
A positive influence of primary productivity on infectious agent 
abundance would also be in line with universal scaling rules based 
on metabolic theory (Hechinger et al., 2011). In contrast to this 
expectation we, in fact, observed infectious agent abundance to 
decrease as EVI increased; and this trend was, in turn, accompa-
nied by changes in network modularity and connectivity. Whilst 
the present study is focussed on prediction and is not configured 
to reveal any causal chain between productivity, abundance and 
community structure, nonetheless, it is useful, from the point of 
view of circumscribing future hypotheses, to briefly speculate on 
what the biological drivers for these observed trends might be. 
One possibility is that the negative association we saw between 
primary production and overall infection burden is due to a dilu-
tion effect, either acting at a community level, through increased 
biodiversity (Schmidt & Ostfeld, 2001), or at the host population 
level, through rapid demographic increase in the specific host 
(Abu- Madi et al., 2000). In the former case, bottom- up trophic 
cascades might, for example, increase the diversity of organisms 
similar to the specific hosts of infectious agents, diluting their fre-
quency and reducing successful transmission (Huang et al., 2017; 
Khalil et al., 2016; Loxton et al., 2017; McManus et al., 2021; Min 
et al., 2021; Stewart Merrill & Johnson, 2020; Stuart et al., 2020). 
In the case of a population- level dilution effect, demographic 
expansion of the specific host populations, again driven by bot-
tom- up trophic cascades, might outstrip the transmission ability 
of infectious agents. Patterns attributable to the latter process 
can often be observed in seasonally recruiting rodent populations 
(Abu- Madi et al., 2000). In either of these scenarios, in addition 
to dilution effects on abundance, increases in unsuitable or yet- 
to- be- infected hosts might also increase modularity and decrease 
connectance. A further possibility is that high primary production 
might result in a better host nutritional state, elevating immuno-
competence (Jackson et al., 2020; Shearer & Ezenwa, 2020). This 
might limit abundance via host resistance effects and increase 
modularity, or reduce connectance, through amplified individual 
immunoheterogeneity (Tinsley et al., 2020). These dilution or im-
munocompetence scenarios are not mutually exclusive, and other 
possibilities could also be envisaged, but there is some reason to 
think that population- level dilution is less likely. As this scenario 
depends on demographic expansion of the host, it is not supported 
by our host abundance data, which were not predicted by EVI and 
only weakly predicted infectious agent abundance. However, we 
note that the simple trapping rates we recorded do not account 
for variation in detectability (individual capture probability), which 
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    |  9JACKSON et al.

could, putatively, vary systematically with EVI. Thus, more re-
search is required to distinguish between the possibilities set out 
above, or other possibilities, and to understand the processes de-
termining the links between EVI and infectious agent abundance 
and community structure observed here.

Our results have important implications for the effect of 
global environmental change on infectious disease risk in natural 
vertebrate wildlife reservoirs, given the recent broad worldwide 
greening trend (Buitenwerf et al., 2018; Mao et al., 2016; Nemani 
et al., 2003; Winkler et al., 2019; Zhu et al., 2016). As disease 
transmission risk would be expected to increase with pathogen 
abundance, all other things being equal, and as we observed abun-
dance to decrease with EVI (greening) here, it seems likely that 
otherwise stable habitats with increasing productivity would be 
subject to decreasing infectious disease risk. More tentatively, 
the changes that we observed in community structure as EVI in-
creased might also affect disease risk through altering community 
stability. Notably, this possibility depends on the existence of 
interspecific interactions that might act as stabilising or destabi-
lising feedbacks, and for which there is some evidence in wild ver-
tebrate systems (Behnke, 2008, 2009; Behnke et al., 2005, 2009; 
Ferrari et al., 2009; Jackson et al., 2006; Knowles et al., 2013; 
Lello et al., 2004; Lewis et al., 2023; Pedersen & Antonovics, 2013; 
Telfer et al., 2010). In the present dataset we observed modular-
ity to increase and connectance to decrease with increasing EVI, 
with both connectance and modularity effectively being proxies 
of abundance. Increasing modularity and decreasing connectance 
would be linked to increasing stability in classical theoretical 
studies of random networks (May, 1972). On the other hand, this 
may not apply in the non- random set of network structures that 
occur in real ecological situations (Pimm, 1979; Solow et al., 1999; 
Stouffer & Bascompte, 2011; Teng & McCann, 2004), which may 
be subject to effects in the opposite direction, i.e., destabilising 
effects in respect of the trends that we observed here. Thus, 
whilst we are currently unable predict the nature of effects on 
stability resulting from the EVI- linked changes in modularity and 
connectance seen here, there is evidence from the wider literature 
on ecological networks that these community properties could  
affect stability (Bascompte & Scheffer, 2023; Baumgartner, 2020; 
Grilli et al., 2016; Landi et al., 2018). Clearly, more research is  
required on the stability properties of the community structures 
of infectious agents.

It is possible that including more remotely sensed variables af-
fecting infectious agent transmission and establishment might ulti-
mately increase the encouraging predictiveness we have observed 
here. In our current study we a priori focussed specifically on EVI 
due to its embodiment of primary productivity, which we expected 
(as set out in the Introduction) to drive infection levels through ef-
fects on host availability and host immunocompetence. However, 
we note that EVI would also be expected to correlate with other en-
vironmental variables, such as temperature or precipitation (Felton 
et al., 2021), that might have separate, direct effects on infectious 
agent dynamics (Arneberg et al., 1998; Mouritsen & Poulin, 2002). 

For example, temperature change may alter the rate of development 
or the survival of infective stages, whilst precipitation may also alter 
the dynamics of transmission in free- living stages. Whilst all of these 
processes might not always drive infection burden in the same di-
rection, nonetheless, our present result suggests that, overall, there 
may be a consistent pattern. Thus, EVI, with its links to primary 
production, precipitation and temperature seems likely to provide 
a valuable “all- in- one” predictor, but more work, with new datasets, 
is necessary to assess additional predictors and also to assess the 
optimal time intervals and time lags at which EVI is most predictive.

In conclusion, we have shown proof- of- principle that remotely 
sensed data, reflecting primary productivity, can predict fluctua-
tions in the burden and community structure of infections in wild 
vertebrates in near- real- time, when standardised within localities. 
The sequels of greening that we observed in infectious agent com-
munities seem most likely to limit the spread of infection and the 
chance of transboundary emergence. Thus, greening is associated 
with overall decreases in the burden of infection that would be ex-
pected to reduce the probability of transmission. Moreover, green-
ing is also associated with increased modularity and diminished 
connectance in the infectious agent community. These tendencies 
may affect community stability, which, in turn, might determine 
the propensity for novel community dynamics leading to new in-
fection risks. Given the recent clear overall worldwide greening 
trend (Buitenwerf et al., 2018; Mao et al., 2016; Nemani et al., 2003; 
Winkler et al., 2019; Zhu et al., 2016), albeit with some evidence 
this may be slowing down, or patchy on some geographical scales 
(Winkler et al., 2021), our results suggest that, at least in stable 
habitats (i.e., those not disrupted by new human encroachment or 
excessive climate- driven change), infection risks may have been di-
minishing, all other things being equal. Recent studies of global land 
use change have predicted drastic future mass extinctions of par-
asites (up to 30% of parasitic worm species by 2070) due to loss 
of habitat (Carlson et al., 2017), which might have a suppressive in-
fluence on global infection risks. Moreover, our results suggest this 
could be compounded, assuming continued greening, in surviving 
intact habitats, by within- habitat reduction in the overall abundance 
of infectious agents. On the other hand, in the case of greening 
trends decelerating, our results may give cause for concern. Whilst 
zoonotic emergence has been observed to increase overall in re-
cent decades, which has been attributed mostly to anthropogenic 
disturbance of natural habitats (Eby et al., 2023), this trend may 
have been restrained, if our present results are correct, by declin-
ing infection risks from relatively undisturbed ecoystems (e.g., po-
tentially reducing the set of pathogens available for transboundary 
emergence in habitats prior to disturbance). Thus, if greening were 
to slow or reverse in the future, our findings suggest the rate of zoo-
notic emergence would accelerate (for example, increasing the set 
of pathogens available for transboundary emergence when habitats 
are disturbed). In practical terms, our results provide optimism that 
routinely collected remote- sensing data could provide useful low- 
cost forecasting of changing within- habitat infection risk in natural 
animal populations. We suggest that more research is warranted to 
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explore this possibility, including to elucidate the intervening causal 
chain and dynamics that link primary productivity to fluctuations in 
natural communities of infectious agents.
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