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Article

Applications and limitations of
museum data for conservation
and ecology, with particular
attention to species distribution
models

Tim Newbold
University of Nottingham, UK

Abstract
To conserve biodiversity, it is necessary to understand how species are distributed and which aspects of the
environment determine distributions. In large parts of the world and for the majority of species, data
describing distributions are very scarce. Museums, private collections and the historical literature offer a
vast source of information on distributions. Records of the occurrence of species from these sources are
increasingly being captured in electronic databases and made available over the internet. These records
may be very valuable in conservation efforts. However, there are a number of limitations with museum
data. These limitations are dealt with in the first part of this review. Even if the limitations of museum
data can be overcome, these data present a far-from-complete picture of the distributions of species. Species
distribution models offer a means to extrapolate limited information in order to estimate the distributions of
species over large areas. The second part of this paper reviews the challenges of developing species distri-
bution models for use with museum data and describes some of the questions that species distribution mod-
els have been used to address. Given the rapidly increasing number of museum records of species occurrence
available over the internet, a review of their usefulness in conservation and ecology is timely.

Keywords
ecological niche modelling, georeferencing, GIS, museum data, natural history collections, species
distribution modelling

I Introduction

Museums, private natural history collections,

herbaria and the historical literature contain a

wealth of information on the distributions of

species in the form of recorded occurrences of

species (hereafter ‘museum data’ or ‘museum

records’). In recent years, more and more of

these data have been captured in electronic

databases and made available through data por-

tals on the internet (for a list of some of the major

databases available, see Graham et al., 2004),

although a vast number of records still remain

to be computerized (O’Connell et al., 2004). The

largest of these portals, and the most wide-

ranging in geographical scope, is the Global

Biodiversity Information Facility (http://www.

gbif.org), which at the time of writing contained
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177,448,319 species occurrence records from all

over the world. These records show patchy

spatial coverage and some countries have much

better data than others. This is reflected in the

existence of several national databases, such as

the National Biodiversity Gateway (NBN) for

the United Kingdom (http://www.nbn.org.uk),

which contains 40,397,129 records, and Egypt’s

BioMAP project. The BioMAP project (http://

www.biomapegypt.org), which ran between

2004 and 2007, collected records of Egyptian

species from museums, private collections and

the literature in an electronic database. By the

end of the project, the database contained

about 500,000 records for mammals, butterflies,

reptiles, amphibians, aquatic invertebrates and

plants.

Museum data can be of enormous value to

conservation biologists and ecologists for study-

ing the distribution and abundance of species.

However, there are a number of limitations of

museum data in this context. Of particular con-

cern are errors in the records, and bias in their

scope (reviewed previously in Graham et al.,

2004). In this paper, I revisit these limitations,

with reference to examples from the GBIF data-

base and also from Egypt’s BioMAP database.

In the second part of the review, I deal with

some of the applications of museum data in

conservation ecology. In particular, I focus on

one method for filling gaps in our knowledge

about the distributions of species: species distri-

bution modelling. Most previous reviews of spe-

cies distribution modelling have focused on

technical aspects of their use (eg, Pearson and

Dawson, 2003; Wintle et al., 2005; Araújo and

Guisan, 2006; Hirzel and Le Lay, 2008). Here,

I focus on the challenges of developing distribu-

tion models using museum data and review

some of the applications of distribution models,

focusing on studies that have used museum data.

II Limitations of museum data

1 Errors

The accuracy of museum data is often uncertain.

There may be errors in the identification of spe-

cies or in the location of records (reviewed in

Graham et al., 2004). Errors in the identification

of species can only be detected by very careful

checking of all records. One of the main advan-

tages of using records from museums, private

collections and herbaria is that the original mate-

rial (see Figure 1) can be re-examined to check

the species identification and to update the iden-

tification in the event that accepted taxonomies

have changed (Graham et al., 2004; O’Connell

Figure 1. Examples of specimen material from museums, private collections and herbaria. From left to
right: bottled specimens of Egyptian reptiles in the field museum in Chicago (photo: Sherif Baha El Din);
butterfly specimen from the Egyptian Ministry of Agriculture, with label (photo: butterfly – Torben Larsen;
label – Mahmoud Saleh Abdel Dayem); herbarium sheet from the Alexandria Natural History Society
(photo: Adel Gazzar).
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et al., 2004). An additional complication in the

identification of species is that accepted taxo-

nomies are constantly being updated, with the

result that different names may be given to the

same species depending on when the record was

made. Therefore, it is necessary to check lists of

synonyms to ensure that all records are assigned

to the correct species. For some taxonomic

groups, such as mammals, this information is

readily available through global species lists

(Wilson and Reeder, 2005). For other groups,

the information is scattered throughout several

different works or is not available at all.

Museum records are often accompanied by a

textual description of the locality from which

they were taken, although coordinates are

occasionally given. Assigning geographical

coordinates to records, a process referred to as

‘georeferencing’, is subject to a number of pos-

sible errors and uncertainties (Wieczorek et al.,

2004). First, textual descriptions may refer to

anything from very precise locations to very

broad areas. For example, some locations in the

BioMAP database have very accurate descrip-

tions (eg, ‘St. Katherine’s Monastery’), while

other descriptions are very vague (eg, ‘Egypt’).

The coordinates assigned to vague descriptions

will obviously be much less accurate. Second,

where the description of a location includes an

offset (eg, ‘5 km northwest of St. Katherine’s

Monastery’), there will be uncertainty over the

accuracy of the measurements of distance and

direction. Third, where coordinates have been

provided with a record, uncertainty will be gen-

erated if the corresponding coordinate system

has not also been given. There are many differ-

ent coordinate systems in use, each of which

gives slightly different coordinates for a loca-

tion. Finally, where records are georeferenced

using a map, the accuracy of the map will affect

the accuracy of the resulting coordinates.

Wieczorek et al. (2004) present a method for

combining these various sources of uncertainty

to calculate the overall uncertainty in each geor-

eferenced location. Their method assumes that

uncertainty is equal in all directions around a

point and that the true locality has an equal

chance of falling anywhere within a sphere of

a specified radius around the given coordinates.

However, some of the uncertainties operate only

in one direction and the true coordinates will be

more likely to fall in some locations around the

assigned coordinates than in others, meaning

that Wieczorek et al.’s (2004) method overesti-

mates the actual degree of uncertainty. Guo

et al. (2008) present a new method that accounts

for this directionality and describes the uncer-

tainty around assigned coordinates as a probabil-

ity density function.

Additional problems are generated when

records come from countries whose languages

use different alphabets to the language in which

the records are made (usually the Latin alpha-

bet). Site names are often transliterated into the

Latin alphabet at the time of collection. How-

ever, different collectors may produce very

different spellings for the same site. This can

make it very difficult to identify all records that

came from the same site (McGowan and

Gillman, 1997). As part of the BioMAP project,

a gazetteer was developed for Egypt listing coor-

dinates for all of the collecting sites used with

the museum records along with all known

transliterations, from Arabic to English, for

these sites. This enabled records to be matched

to sites with a reasonably high degree of confi-

dence. This was actually the hardest and most

time-consuming part of the entire project.

2 Bias

Another major limitation of museum data is that

they are often biased (Graham et al., 2004). Bias

in the records may be of four types: spatial,

environmental, temporal and taxonomic (Soberón

et al., 2000).

Historical sampling of species has clearly

been biased spatially and there are still major

gaps in our knowledge. Global sampling has

been particularly poor in tropical areas and in
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arid environments (Stockwell and Peters, 1999;

Anderson et al., 2002a; Soria-Auza and Kessler,

2008). To test for spatial bias in records from

GBIF, I calculated the density of records for each

country with records in the database. Record

density was then analysed with respect to two vari-

ables: an index of human impact and per capita

gross domestic product (GDP). The index of

human impact was derived from the Last of the

Wild project’s 1 km resolution map of human

impact (Sanderson et al., 2002); for each country,

the median value across all grid squares was taken.

Values of record density, GDP and human impact

were all log-transformed to meet assumptions of

normality made by the statistical tests used.

If the records were completely unbiased,

I should expect the number of records per coun-

try to show no relationship with either GDP or

human impact. In reality, the number of records

showed a strong positive relationship with both

GDP (ANOVA: F1, 167 ¼ 29.44, P < 0.001;

Figure 2a) and median human impact index val-

ues (F1, 167 ¼ 66.83, P < 0.001; Figure 2b), sug-

gesting that collecting has been biased towards

more developed countries. GDP and human

impact did not correlate strongly with one

another (Spearman’s rank correlation: rs ¼ 0.2).

At the level of individual countries, even when

sampling has been extensive, gaps and biases

are often apparent in the spatial coverage of spe-

cies records. Several studies on different taxo-

nomic groups and in different countries have

noted unevenness in the spatial coverage of samp-

ling (Austin and Meyers, 1996; Peterson et al.,

1998; Dennis and Hardy, 1999; Dennis et al.,

1999; Hijmans et al., 2000; Soberón et al., 2000;

Reddy and Dávalos, 2003; Kadmon et al.,

2004; Hortal et al., 2008; Sánchez-Fernández

et al., 2008). Records are often closer to

roads, rivers, coasts, towns and cities than they

would be if sampling were completely random

(Hijmans et al., 2000; Soberón et al., 2000; Reddy

and Dávalos, 2003; Kadmon et al., 2004).

Furthermore, sampling tends to be close to the

homes of active collectors (Dennis and Thomas,

2000) or concentrated in areas that are of more

interest to collectors, such as protected areas

(Reddy and Dávalos, 2003) or hotspots of diver-

sity (Dennis and Thomas, 2000). Localities with

records in the BioMAP database show reasonably

good coverage of Egypt’s area. However, there

are important gaps in collecting, especially in the

Western Desert, but also in parts of the Eastern

Desert and in the northern part of the Sinai

Peninsula (Figure 3). Of course, dot maps only

show visited locations where organisms were

recorded, and not locations visited but which

yielded no records. Large areas of the Western

Desert of Egypt make up the Great Sand Sea, not

an environment from which many records are to

be expected, nor an area to which one can antici-

pate many visitors. Nevertheless, there is clearly a

need for more systematic sampling in the future in

all countries, focusing on areas that have been

overlooked in the past, including the less diverse

places outside protected areas.

Many applications of museum data involve

analyses of the environment that species inhabit.

For these applications, gaps in the spatial cover-

age of records may not be a problem as long as

the data are not environmentally biased. How-

ever, spatial bias may result in environmental

bias. For example, Hortal et al. (2008) showed

that museum records for dung beetles in Madrid

did not completely capture the environmental

conditions inhabited by species. On the other

hand, other studies have shown that museum

records may be spatially uneven without there

being major biases in environmental space

(Austin and Meyers, 1996; Kadmon et al.,

2004). I conducted a test of environmental bias

in the BioMAP data for butterflies with respect

to four environmental gradients: elevation, mean

annual temperature, total annual precipitation

and an index of human impact from the Last of

the Wild project (Sanderson et al., 2002). The

butterfly data set is the most spatially patchy of

those currently completed by the BioMAP proj-

ect. Although records were clearly biased with

respect to the human impact index, there was no
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Figure 2. (a) The relationship between a country’s gross domestic product (GDP) and the density of
species occurrence records in the Global Biodiversity Information Facility (GBIF) database. (b) The
relationship between an index of human impact, derived from the Last of the Wild project (Sanderson et al.,
2002), and the density of occurrence records in the GBIF database.
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obvious bias with respect to temperature, precipi-

tation or elevation (Figure 4). A quantitative

analysis of the same data showed that records

were distributed almost as evenly along the

main environmental gradients as would be

expected if the sites had been located

randomly (Newbold et al., 2009). These results

suggest that the butterfly collectors have

sampled the main environmental gradients rel-

atively evenly, although they have tended to

visit sites that are more accessible – ie, those

that are closer to roads, towns and cities. For

uses of museum data that involve analyses of

the environments in which species are found,

it will be important to ensure that the species

records are not environmentally biased. Even

if systematic sampling of the whole area of inter-

est is not possible, future sampling should be

designed to cover all of the main environmen-

tal gradients present (Hirzel and Guisan, 2002;

Wintle et al., 2005).

Species records from museums will almost

always show temporal bias, with peaks in col-

lecting when experts on a given taxonomic

group are most active (Soberón et al., 2000). For

example, records of species in Egypt are

unevenly distributed temporally. Sampling for

all groups shows clear peaks during periods of

time when collectors were most active; these

peaks were different for different taxa

(Figure 5a). As well as being biased towards

certain years, biodiversity sampling may also

be seasonally biased (Peterson et al., 1998).

Records for mammal, reptile and amphibian spe-

cies in Egypt were biased seasonally towards the

summer months, but not dramatically (Figure

5b). The fact that butterflies were sampled much

more often in the summer months is not surpris-

ing since the adults of most butterfly species fly

only in the summer. Removing all temporal

bias in sampling is almost impossible, because

there are not enough biologists to sample all

taxonomic groups and all geographical areas

continuously. However, in rare cases where data

sets with records that cover long periods of time

do exist, they can be used to make important

inferences about temporal changes in the distri-

bution and abundance of species (eg, Peach

et al., 1996; Fitter and Fitter, 2002).

The final type of bias often present in

museum data is taxonomic bias. Collectors have

tended to focus on the larger, charismatic groups

of organisms, and on groups that are more easy

to detect in the field (Soberón et al., 2000;

Williams et al., 2002; Graham et al., 2004). This

has led to a bias in sampling towards vertebrates,

flowering plants and some insect groups. For

example, in the GBIF database, vertebrates and

plants are massively overrepresented while most

other groups are underrepresented, compared to

the estimated total number of species in each

group (Figure 6). In the future, there needs to

be a greater focus on collecting records for the

less-well-studied taxonomic groups. However,

we do not have infinite resources and thus it will

be impossible to comprehensively sample all

Figure 3. Sites with species occurrence records
in Egypt’s BioMAP (http://www.biomapegypt.org)
database. Note that collecting effort has been
highest in the Nile Valley and Delta, along the
Mediterranean Coast and in the Sinai Peninsula.
There are gaps in collecting effort in the Western
Desert and, to a lesser extent, in the Eastern
Desert and the North Sinai Peninsula.

8 Progress in Physical Geography 34(1)

8
 at University of Nottingham on July 15, 2010ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


taxonomic groups. This has led to considerable

interest in conservation ecology in the possibility

that the distributions of well-studied taxa could

act as surrogates for the distributions of other

taxa (Loyola et al., 2007; Pinto et al., 2008).

It is crucial to know about the errors and

biases in museum data so that their limitations

are known. Nevertheless, when used with cau-

tion, museum data can be invaluable in efforts

to understand patterns in the distribution of

species, as described in the next section.

III Using museum data to model
species’ distributions

1 Determining species distributions

Even if efforts are made to reduce bias in data on

the occurrence of species, it will almost never be

possible to sample comprehensively. Further-

more, we need to act now to save species from

extinction. We cannot wait indefinitely for better

information, but must use the knowledge that we

already have. In spite of their limitations,

museum data may be very useful for conserving

biodiversity. For example, several studies have

used museum data to estimate the size of species

ranges in order to predict their risk of extinction,

according to the guidelines set out by the

International Union for the Conservation of

Nature (IUCN) (eg, Randrianasolo et al., 2002;

Greenbaum and Komar, 2005). Gilbert and Zalat

(2007) presented a similar assessment of the

conservation status of Egypt’s butterfly species,

using museum records from the BioMAP

database. The number of records and the area

occupied by each species (measured using

extents of occurrence and areas of occupancy;

Figure 4. Frequency distribution of sites from the BioMAP database with butterfly records, with respect
to four environmental gradients – (a) elevation, (b) mean annual temperature, (c) total annual precipitation
and (d) an index of human impact (Sanderson et al., 2002) (black bars) – and the frequency distribution of all
30 arc-second grid cells in Egypt with respect to the same gradients (grey bars)
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Gaston, 1991) were used to assign each species

to one of the IUCN categories of risk. Of 63 spe-

cies, one was listed as critically endangered, one

as endangered, 14 as vulnerable and five as data-

deficient.

Among the IUCN criteria used to categorize

extinction risk are those describing trends in

populations. Some studies have used museum

records spanning several years to investigate

population trends in order to make better

Figure 5. (a) Temporal and (b) seasonal distributions of records for butterflies (black bars), mammals
(dark grey bars), and reptiles and amphibians (light grey bars) in Egypt’s BioMAP database
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assessments of conservation status (McGowan

and Gillman, 1997; McCarthy, 1998). Plotting

the BioMAP records for the Dorcas gazelle

(Gazella dorcas Linnaeus) in Egypt reveals a

dramatic decline in the range inhabited by this

species in the last 20 years (Figure 7). The distri-

bution of the Dorcas gazelle in Egypt has been

well studied in recent years (Saleh, 1987; El

Alqamy and Baha El Din, 2006). However, for

many species occurrence data with sufficient

temporal coverage for this kind of analysis are

not available.

Another possibility for using museum records

in conservation assessments is to combine data

for many species to identify areas that are partic-

ularly rich in species. Funk et al. (1999) used this

approach for a selection of genera in 12 taxo-

nomic groups in Guyana, identifying three

hotspots of diversity.

If the sampling of biodiversity in an area is

incomplete and biased, then the results of con-

servation assessments using museum data may

reflect artifacts of collecting effort rather than

the real status of species. We need some way

to extrapolate from the incomplete data that exist

in order to estimate whether species occur in

places that have not been sampled. Species dis-

tribution models (or ecological niche models,

bioclimate models, or climate envelope models)

offer a means to do this. They attempt to capture

the ecological niche of species, by relating a set

of records of species occurrence to variables

describing aspects of the environment thought

to be important in determining the distribution

of species (for recent reviews, see Wintle

et al., 2005; Araújo and Guisan, 2006; Hirzel

and Le Lay, 2008). There has been a massive

increase in the use of species distribution models

in the last two decades, and several dedicated

computer programs have been developed for

producing them (eg, Stockwell and Noble,

1992; Phillips et al., 2006).

2 Species distribution models

A large number of different methods exist for

modelling the distributions of species. Among

them are traditional statistical techniques, such

as generalized linear models. These techniques

Figure 6. Number of records in the Global
Biodiversity Information Facility (GBIF) database
(grey bars), compared to estimated total numbers
of species according to May (1997) (black bars), for
a number of major taxonomic groups Figure 7. Temporal trend in the distribution of

Dorcas gazelles (Gazella dorcas) in Egypt, inferred
from museum records taken from Egypt’s BioMAP
database. Records were divided into three time
periods between 1940 and 2000
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require records of both species presence and

species absence. However, museum data gener-

ally consist only of presence records (Graham

et al., 2004). One solution is to draw randomly

a set of absence records from cells that do not

contain presence records (termed ‘pseudo-

absence data’; Zaniewski et al., 2002). Alterna-

tively, there are many modelling techniques that

do not require absence data. For example, some

models simply define an environmental envel-

ope encompassing all of the presence records,

within which the species is considered capable

of surviving and reproducing. However, in com-

parisons of the accuracy of models developed

with different techniques, envelope methods

have been shown to be among the worst-

performing (Elith et al., 2006). The most popular

modelling techniques, and those that have seen

extensive use with museum data, are those that

model the presence records with reference to the

environmental conditions in the whole study

area; examples of these techniques are Maxent

(Phillips et al., 2006) and GARP (Stockwell and

Noble, 1992). Many of these techniques have

been shown to produce very accurate models

of species’ distributions (Elith et al., 2006).

In order to develop useful distribution

models, it is necessary to select environmental

variables likely to show a strong association with

the distribution of species. Using too many

variables will result in overfitting of the model

(Chatfield, 1995). It has been shown that the

choice of environmental variables can have a

significant effect on model accuracy (Parolo

et al., 2008; Peterson and Nakazawa, 2008).

Models developed with environmental variables

that have a direct effect on distributions will be

more accurate, more biologically informative

and more generalizable than models developed

with variables that have only an indirect effect

on distributions, through correlations with

variables that have a direct effect (Austin and

Meyers, 1996; Austin, 2002; 2007; Austin

et al., 2006). The determinants of distributions

are likely to be different at different spatial

scales and extents of study (Mackey and Linden-

mayer, 2001). For example, Anderson et al.

(2009) showed that distribution models using

climate variables explained the distribution of

the hen harrier (Circus cyaneus Linnaeus) at the

European scale very well, but that the British

distribution was modelled better by finer-scale

habitat data and variables describing habitat

management. Climate and habitat variables are

the most commonly used variables in distribu-

tion model studies and have been shown many

times to be very good correlates of species

occurrence (Guisan and Hofer, 2003; Araújo

et al., 2005a; Wintle et al., 2005; Elith et al.,

2006; Guisan et al., 2006b). However, other fac-

tors may also be important in determining

distributions.

Even the earliest discussions of ecological

niches recognized that interactions among

species may play an important role in shaping

distributions (Grinnell, 1917) and this is a topic

that has received much attention since (Pulliam,

2000). Anderson et al. (2002a; 2002b) devel-

oped distribution models for two species of

spiny pocket mouse (Heteromys australis

Thomas and H. anomalus Thompson) in South

America, inferring that dominance by one spe-

cies in areas of predicted sympatry was the result

of competitive exclusion by the dominant

competitor. Several studies have found that

including variables describing the distributions

of interacting species can improve the accuracy

of distribution models. For example, including

the distributions of southern beech (Nothofagus

sp. Blume) competitors improved the accuracy

of distribution models for tree species in New

Zealand (Leathwick and Austin, 2001). Simi-

larly, models of Australian marsupial species

including variables describing the abundance

of competing species were more accurate than

models that did not include these variables

(Ritchie et al., 2009). The availability of food

may also have an important effect on the

distribution of species. The accuracy of distri-

bution models for the specialist clouded Apollo

12 Progress in Physical Geography 34(1)

12
 at University of Nottingham on July 15, 2010ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


butterfly (Parnassius mnemosyne Linnaeus) was

improved by including the distributions of its

larval host plants as environmental variables

(Araújo and Luoto, 2007). Another study

(Gutiérrez et al., 2005) found that the distribu-

tions of larval host plants were not very impor-

tant in determining the distribution of a more

generalist butterfly species, the silver-studded

blue (Plebejus argus Linnaeus), but that the

accuracy of models of its distribution was

improved by including the distribution of its

mutualistic ant species, Lasius niger Linnaeus.

Distributions will also be affected by the

ability of species to disperse to different parts

of their potential ranges. An area of suitable cli-

mate and habitat will not be occupied by a species

if it is unable to disperse there (Pulliam, 2000).

Conversely, populations of a species may be able

to persist in areas where the climate and habitat

would not otherwise be able to support popula-

tions (termed ‘sink’ areas), by continual immigra-

tion from suitable areas (‘source’ areas).

Dispersal limitation and source-sink dynamics

will result in spatial patterns in species distribu-

tions that are at least partly independent of the

environment; these spatial patterns are referred

to as endogenous spatial autocorrelation

(Legendre, 1993). Spatial autocorrelation can be

captured using autologistic models (Osborne

et al., 2001; Keitt et al., 2002; Lichstein et al.,

2002; Segurado et al., 2006; Dormann et al.,

2007). However, it is difficult to apply autologis-

tic models to opportunistic records of species

occurrence, such as museum records (but see

Syartinilia and Tsuyuki, 2008, for one solution

to this problem). An alternative method to

account for spatial autocorrelation when model-

ling species’ distributions is to include the geogra-

phical coordinates (longitude and latitude), and

interactions between them, as independent vari-

ables in the model; this is referred to as ‘trend sur-

face analysis’ (Legendre, 1993; Lobo et al., 2002;

van Rensburg et al., 2002; Gutiérrez et al., 2005).

Although distributions may be determined

by a great many environmental factors, both

abiotic and biotic, distribution models are often

constrained by the availability of maps of these

variables in the required format and at an

appropriate resolution. Climate and broad-

scaled habitat data are now very widely avail-

able. WorldClim provides global maps

describing elevation and 19 climatic variables,

at resolutions as fine as 30 arc-seconds (Hijmans

et al., 2005), and there are global classifications

of habitat at similar resolutions, derived from

satellite imagery (eg, Hansen et al., 2000). Data

on microclimate and fine-scale habitat, which

may be important in determining distributions

over smaller extents, and on the distributions of

interacting species are very often not available.

3 Challenges of using museum data to
develop species distribution models

The problems caused by errors in the location of

museum records and bias in sampling effort

have received a great deal of theoretical

treatment, but the effect of these on the accuracy

of distribution models has received very little

empirical testing. It seems intuitive that environ-

mental bias in the collecting of species records

will result in model predictions that are biased

towards environments that have received more

intense sampling (Araújo and Guisan, 2006;

Wintle et al., 2005). Indeed, Kadmon et al.

(2003) found that the accuracy of distribution

models for woody plants in Israel decreased

strongly with an increase in the climatic bias

of species records. Stockwell and Peterson

(2002) showed that controlling for environmen-

tal bias in sampling improved the accuracy of

distribution models for the wood thrush

(Hylocichla mustelina Baird) in the United

States. Phillips et al. (2009) also showed a

decrease in model accuracy with increasing

sampling bias, by creating a simulated distribu-

tion in Canada and sampling this distribution

with increasing degrees of bias. On the other

hand, spatial bias may not have a negative

impact on distribution model accuracy if it does
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not result in environmental bias. Kadmon et al.

(2004) demonstrated substantial bias towards

roads in records of the occurrence of woody

plants in Israel. However, the accuracy of mod-

els developed using these records was not

decreased by this bias because the distribution

of roads in Israel was not biased environmentally

(Kadmon et al., 2004). Therefore, when using

museum data for distribution modelling, it is

important to ensure that the records are not biased

with respect to the environmental variables used.

The effect of errors in the location of records

on the accuracy of species distribution models is

less obvious. Maps of environmental variables

generally consist of values arranged in a grid

of numerous squares. If the locational error is

sufficiently large that a record is plotted in the

wrong grid square, then the impact on model

accuracy may be large. Indeed, one study

(Visscher, 2006) showed that introducing errors

into records of a simulated species in Canada

decreased the accuracy of resource selection

function models, which are very similar in prin-

ciple to species distribution models. In contrast,

if the environmental variables are spatially auto-

correlated (such that neighbouring cells tend to

have similar values of a given variable), as is

generally the case, then small errors in the loca-

tion of records may have a small effect on model

accuracy, even if the records are plotted in the

wrong grid cell (Graham et al., 2008). Graham

et al. (2008) found that introducing relatively

small errors into the occurrence records for

many different species from regions all over the

world had, overall, only a minor effect on the

accuracy of distribution models; the effect of

these errors was greatest in the region that

showed the lowest spatial autocorrelation in the

environmental variables.

4 Applications of species distribution models

Species distribution models have been applied to

answer a wide variety of questions in conser-

vation and ecology. Given the considerable

investment in time and money necessary to con-

duct surveys of the occurrence of species, many

studies using distribution models have used

records from museums, collections and the liter-

ature. One obvious use for the models is in guid-

ing decisions about the conservation of species.

For example, one study (Guisan et al., 2006a)

used records of the occurrence of alpine sea

holly (Eryngium alpinum Linnaeus) in Switzer-

land, collected by volunteers, to guide a survey

to search for more populations; the resulting

survey led to the discovery of seven new popula-

tions (Guisan et al., 2006a). Likewise, Raxworthy

et al. (2003) used distribution models based on

museum data for chameleons in Madagascar to

direct additional surveys. A search of places

predicted to have high numbers of chameleon

species yielded seven new species (Raxworthy

et al., 2003).

Distribution models can also be used to iden-

tify areas that are important for species of con-

servation concern in order that those areas may

be protected. Several studies have used distribu-

tion models to assess the protection afforded to

threatened species by existing protected areas

networks and to propose additions to these net-

works that would benefit the species concerned

(Papeş and Gaubert, 2007; Solano and Feria,

2007; Thorn et al., 2009). Another possibility

is to use the models to identify sites that are

potentially suitable for reintroductions (Klar

et al., 2008).

By determining the main correlates of species

occurrence, distribution models can also be used

to infer the causes for changes in the distribution

of species over time. For example, one study

used them to show that the decline in the distri-

bution of the bilby (Macrotis lagotis Reid) in

Australia since European settlement was associ-

ated with the introduction of non-native preda-

tors and with changes in the frequency and

magnitude of fires (Southgate et al., 2007).

Another study showed that the extinction of the

woolly mammoth (Mammuthus primigenius

Blumenbach) in the Palearctic was probably the
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result of both environmental changes and over-

hunting by humans (Nogués-Bravo et al., 2008).

Conservation ecologists often use species

richness to assess how important it is to protect

an area because species richness is relatively

easy to measure, although other criteria may

be more informative (Kershaw et al., 1995;

Margules and Pressey, 2000; Wilson et al.,

2007). However, extensive gaps in our knowl-

edge of the distribution of species mean that

even species richness estimates may be unavail-

able for many areas. One way around this prob-

lem is to develop species distribution models to

fill the gaps in our knowledge of the distribution

of individual species, and then to combine these

distribution models to estimate species richness.

This approach has been used a number of times

to model patterns of species richness in parts of

the world where distribution data are patchy

(Loiselle et al., 2003; Garcia, 2006; Pineda and

Lobo, 2009; Raes et al., 2009; Newbold et al.,

2009). Models of species richness can be used

to assess whether existing networks of protected

areas are effective at conserving the most biolo-

gically diverse areas (Garcia, 2006; Newbold

et al., 2009).

Another major application of distribution

models, and one that is receiving a lot of atten-

tion from scientists, policy-makers and the

media, is in trying to predict how climate change

will affect species. The basic principle is to fit a

distribution model using species records and cli-

mate data from the current time period, and then

to project this model onto variables describing

the climate as it is predicted to be in the future

(Pearson and Dawson, 2003). Among the many

studies that have used this approach, several

have used museum records to fit the models

(Iverson et al., 1999; Peterson et al., 2001;

2002; Bakkenes et al., 2002; Miles et al.,

2004; Hole et al., 2009). There are a number

of complications in predicting how climate

change will affect the distribution of species

(Pearson and Dawson, 2003; 2004; Hampe,

2004; Guisan and Thuiller, 2005): first,

interactions between species may affect how

they respond to climate change (Davis et al.,

1998; Araújo and Luoto, 2007; Post and Peder-

sen, 2008; Schweiger et al., 2008; Harmon

et al., 2009); second, species may not be able

to disperse fast enough to keep pace with the

changing climate (Iverson et al., 1999; Engler

et al., 2009; Mustin et al., 2009; Willis et al.,

2009); third, the climate may not change as pre-

dicted (Reilly et al., 2001); and, fourth, species

may adapt to the new climate rather than under-

going shifts in their distribution (Davis and

Shaw, 2001; Skelly et al., 2007; Charmantier

et al., 2008; but see Davis et al., 2005; Visser,

2008). The traditional approach to assessing the

accuracy of predictions about future distribu-

tions is to evaluate their fit to the data for the cur-

rent time period. However, given the

uncertainties in predicting future distributions,

this test of accuracy is likely to be inadequate.

A more promising approach is to test the ability

of models to predict changes that have already

occurred. Several studies have done this, show-

ing variable degrees of success in predicting the

changes (Araújo et al., 2005a; 2005b; Green

et al., 2008; Mitikka et al., 2008; Gregory

et al., 2009; La Sorte et al., 2009).

As well as being projected onto future

time periods, distribution models can also be

projected onto different geographical areas to

predict the potential extent of species invasions.

Peterson and Vieglais (2001) used museum data

to model the native distributions of several spe-

cies that are known to be invasive to the United

States. These models were then projected onto

climate variables in the invaded regions to

predict the extent of the invasions. Most previ-

ous invasions of these species were successfully

predicted by the models (Peterson and Vieglais,

2001). Conversely, another study (Broennimann

et al., 2007) found that invasions were predicted

poorly by species distribution models, suggesting

that species’ niches can shift during invasions.

In addition to applied problems, distribu-

tion models may be used to address more
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fundamental ecological questions, such as which

factors show the strongest association with spe-

cies’ distributions. For example, Anderson et al.

(2009) compared four sets of variables for mod-

elling the distribution of the hen harrier in Brit-

ain: climate, habitat, gamekeeper activity and

habitat management (moorland burning), find-

ing that the European distribution was explained

well by climate, whereas the British distribution

was better explained by habitat, habitat manage-

ment and gamekeeper activity. Distribution

models have also been used to address questions

regarding the evolution of ecological niches.

Studies showing that the modelled niches of

closely related species are more similar than the

modelled niches of more distantly related species

have concluded that niches are relatively con-

served over evolutionary time periods (Peterson

et al., 1999; Eaton et al., 2008). In contrast, other

studies have found relatively little evidence for

evolutionary conservatism of modelled niches

(Peterson and Holt, 2003; Rice et al., 2003;

Evans et al., 2009). It would seem that the degree

of conservatism is highly dependent on the

specific context and the timescale over which the

effect is considered (Wiens, 2008).

IV Conclusions

For many areas of the world and for the majority

of species, museum data are the best available

data describing distributions. The availability

of museum occurrence records is clearly biased

towards certain countries and towards species

that are charismatic and more easily detectable.

Nevertheless, conserving biodiversity requires

knowledge of the distribution of species and

museum data must play an important role in this

process. Museum data can be used to assess the

extent of species’ distributions and thus the like-

lihood that species will become extinct. Where

records show sufficient temporal coverage, they

can be used to infer changes in the distribution of

species over time.

Even within countries, sampling of species

has been patchy and the results of analyses using

museum occurrence records may reflect sam-

pling effort more than they reflect real ecologi-

cal phenomena. Species distribution models

are a powerful tool for filling gaps in distribution

data. However, there are a number of limitations

of museum data that need to be considered

before using them to develop distribution mod-

els. Bias in the scope of the records need not

be a problem provided that this does not result

in bias in environmental space. Errors in the

location of records need to be carefully assessed,

although small errors may not always decrease

the accuracy of models.

Species distribution models have been put to a

variety of uses, both applied and conceptual. It is

important to remember that the models are cor-

relative and thus care must be taken in inferring

causal mechanisms for the distribution of

species. This is of particular relevance when pro-

jecting models outside the environmental condi-

tions for which the model was developed, such

as when predicting the impacts of climate

change or predicting the extent of species inva-

sions. Nevertheless, species distribution models

have been used to make some important

advances in our understanding of the distribution

of species and are a valuable tool in efforts to

conserve biodiversity.
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