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Abstract

Large, citizen-science species databases are powerful resources for predictive spe-

cies distribution modeling (SDM), yet they are often subject to sampling bias.

Many methods have been proposed to correct for this, but there exists little con-

sensus as to which is most effective, not least because the true value of model pre-

dictions is hard to evaluate without extensive independent field sampling. We

present here a nationwide, independent field validation of distribution models of

ancient and veteran trees, a group of organisms of high conservation importance,

built using a large and internationally unique citizen-science database: the

Ancient Tree Inventory (ATI). This validation exercise presents an opportunity to

test the performance of different methods of correcting for sampling bias, in the

search for the best possible prediction of ancient and veteran tree distributions in

England. We fitted a variety of distribution models of ancient and veteran tree

records in England in relation to environmental predictors and applied different

bias correction methods, including spatial filtering, background manipulation, the

use of bias files, and, finally, zero-inflated (ZI) regression models, a new method

with great potential to investigate and remove sampling bias in species data. We

then collected new independent field data through systematic surveys of 52 ran-

domly selected 1-km2 grid squares across England to obtain abundance estimates

of ancient and veteran trees. Calibration of the distribution models against the

field data suggests that there are around eight to 10 times as many ancient

and veteran trees present in England than the records currently suggest, with

estimates ranging from 1.7 to 2.1 million trees compared to the 200,000 currently

recorded in the ATI. The most successful bias correction method was systematic

sampling of occurrence records, although the ZI models also performed well,

significantly predicting field observations and highlighting both likely causes of

undersampling and areas of the country in which many unrecorded trees are

likely to be found. Our findings provide the first robust nationwide estimate of

ancient and veteran tree abundance and demonstrate the enormous potential for

distribution modeling based on citizen-science data combined with independent

field validation to inform conservation planning.
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INTRODUCTION

Citizen-science species databases and other large species
record collections are becoming increasingly useful in
conservation research and planning and are able to provide
a great deal of information about species distributions
across large geographical areas and time periods (Pearce &
Boyce, 2006; Schmeller et al., 2009; Tiago, Pereria,
et al., 2017). Nevertheless, sampling bias (also known as
sample selection or survey bias) in this sort of species
data is a widely acknowledged problem (Hijmans, 2012;
Phillips et al., 2009; Syfert et al., 2013). Sampling bias
results in certain areas or species being sampled more
intensively or frequently, most commonly because of
issues relating to accessibility and the location of the
recorders, for example, travel time from a recorder’s home
to a survey site (Dennis & Thomas, 2000), distance from
roads or the availability of pathways (Kadmon et al., 2004;
Reddy & D�avalos, 2003; Schulman et al., 2007), or eleva-
tion/terrain steepness (Mair & Ruete, 2016). The selective
surveying of rare, “special” species or interesting geo-
graphic areas also generates sampling bias in species data
(Kramer-Schadt et al., 2013; Reddy & D�avalos, 2003; Snäll
et al., 2011). Quantifying bias is further complicated by the
fact that different taxa suffer from different causes of spa-
tial bias (Mair & Ruete, 2016).

Species distribution modeling (SDM) is a common
and effective tool for understanding and predicting
species distributions and distributional shifts (Beaumont
et al., 2007; Chen et al., 2011; Clement et al., 2014). SDM
works by assessing the known presence (and sometimes
absence) records of a species in relation to environmental
variables. The suitability of locations for this species,
reflecting its fundamental niche and geographic range, can
then be predicted based on environmental characteristics
(Araújo & Guisan, 2006; Hijmans & Graham, 2006; Mateo
et al., 2011). Many modeling techniques are available, with
maximum entropy (MaxEnt) modeling being by far the
most widely used because of its ability to use presence-only
data and to cope with small data sets (Elith et al., 2006;
Hernandez et al., 2006; Phillips et al., 2006). Sampling bias
in species data can greatly influence SDM performance
and quality because it leads to an exaggeration of the
importance of environmental conditions for species in
better surveyed locations (Syfert et al., 2013; Stolar & Niel-
sen, 2015). Therefore, predicted species distributions from
models built with biased records can vary dramatically

compared to the actual distribution; the predictions partly
represent survey effort rather than species niche require-
ments (Phillips et al., 2009). Incorrect model predictions are
particularly detrimental in the planning of conservation
projects and decision-making about which areas should be
protected or subjected to management (MacKenzie, 2005).
Various methods to assess and correct for sampling bias
have been developed recently, and issues created by sam-
pling bias in SDM and citizen-science recording schemes
are now widely recognized (Boria et al., 2014; Fourcade
et al., 2014; Kramer-Schadt et al., 2013; Phillips et al., 2009).
However, thorough evaluations of these methods using
independently collected, unbiased species data are scarce,
and the true value of many distribution models built using
biased data remains unclear.

Ground-truthing of model verifications using
independently collected, unbiased new data is the
ideal scenario when testing model performance and
predictions, yet distribution models are rarely tested in this
way (Costa et al., 2010; Fabri-Ruiz et al., 2019; Greaves
et al., 2006). The reasons for this are obvious since the
time and financial cost of large-scale surveys is often
prohibitive and difficult. However, the networks of
volunteer recorders for many citizen-science projects may
lend themselves to planned ground-truthing, and with
some forward planning, robust, strategic sampling
methods could be applied in many of these large projects.
In this study we use a large volunteer survey network of a
nationwide citizen-science project, the UK Ancient Tree
Inventory (ATI), to do just that: By recruiting a sample
of enthusiastic volunteers who regularly record for the
project, we carried out nationwide, randomized surveys in
order to validate model predictions independently using
the newly collected unbiased species data, with the aim of
selecting the most robust predictive models of species
distributions.

Dead and decaying wood ecosystems are highly
complex and fragile and are found worldwide (Butler
et al., 2002; Hodge & Peterken, 1998; Seibold & Thorn,
2018; Siitonen, 2001). They provide resources and habitats
for numerous threatened and endangered saproxylic species
(Jonsson et al., 2005; Seibold et al., 2015). Ancient and
veteran trees (sometimes also known as large, old trees or
heritage trees) are trees that are in the later stages of their
life phase and exhibit “veteran characteristics” such as a
retrenched crown, hollowing trunk, holes, and cavities
(ATF, 2008; Nolan et al., 2020; Read, 2000). Strict definitions
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of “ancient” and “veteran” do not exist globally, and the
terms are often used interchangeably (Nolan et al.,
2020). However, in the UK all trees that show veteran
characteristics are usually classed as veteran, and within
this classification, only trees that are significantly older
than most individuals of the same species (often based
on girth measurements) are classed as ancient (ATF,
2008; Nolan et al., 2020).

Ancient and veteran trees are essential contributors
to the persistence of dead and decaying wood ecosystems
in most biomes (Humphrey, 2005; Read, 2000; Speight,
1989) and provide insights into past landscape use and
management and important historical events (Nolan et al.,
2020; Rackham, 1976; Read, 2000; Zhang et al., 2017).
Nevertheless, ancient and veteran trees are declining
around the world (Fischer et al., 2010; Gibbons et al.,
2008; Kirby & Watkins, 2015; Roux et al., 2014), which is
attributed to urbanization, agricultural intensification, and
a lack of planting, management, and awareness of the
development of ancient and veteran tree populations
(ATF, 2005, 2011; Fay, 2002; Lindenmayer et al., 2012;
Lonsdale, 2013; Read, 2000). In addition, relatively few
countries have knowledge about or monitor ancient and
veteran trees sufficiently well for conservation measures to
be effective (Nolan et al., 2020).

The UK is unique in having excellent records of ancient
and veteran trees. The ATI (formerly known as the Ancient
Tree Hunt) is a national database of over 200,000 ancient,
veteran, and other noteworthy trees (Nolan et al., 2020).
The ATI is a great example of a successful and popular
citizen-science project, with hundreds of new tree records
uploaded to the online inventory managed by the Woodland
Trust each month by members of the public, ecological
organizations, and specialized ancient tree volunteer
recorders. Nevertheless, like many citizen-science projects
and online species databases, because of the nonrandom,
unstructured nature of the recording process, there is likely
to be a high level of sampling bias in the ATI. Therefore,
the current distribution map of ancient and veteran trees
based on the ATI may be more reflective of recorder
activity in certain locations than it is of the true
geographical distribution of trees. It is also likely that
there is huge under-recording of trees in many areas,
especially those that are less accessible, less interesting
to survey, or farther away from centers of human
population (Mair & Ruete, 2016; Phillips et al., 2009).
Thus, despite the large number of records collected,
there are thought to be many more undiscovered
ancient and veteran trees in the UK, including those
that are at risk of damage or destruction (Nolan
et al., 2020). Obtaining insight into the true distribution
of ancient and veteran trees, as well as under- or
well-surveyed areas (i.e., patterns of sampling bias), is

therefore key for the conservation and protection of this
important component of biodiversity.

Another problem with using nonrandomly sampled
species data, as found in the ATI, that is often encountered
in SDM is the lack of information about true absences—
locations where the species is definitively not present, as
opposed to those that have simply not been surveyed
(Hastie & Fithian, 2013). Presence-only SDM most
commonly overcomes this by generating “pseudo-
absence” points across the study area. These points are
usually positioned at random (Stockwell & Peters, 1999),
but they can be weighted by geography, environment, or
target group sampling (Hirzel et al., 2001; Phillips &
Dudík, 2008). However, the method of pseudo-absence
generation has been shown to influence model out-
comes (Barbet-Massin et al., 2012; Wisz &
Guisan, 2009) and can result in unreliable models
(Liang et al., 2018).

Predictive species distribution maps based on abundance
are much less common than those based on presence or
presence–absence, because most large species data sets
record only species occurrence (Lyashevska et al., 2016). If
the spatial predictors in SDM are only available at a greater
resolution than the occurrence data, occurrences must be
aggregated to presence-only or presence–absence at the
same resolution, which results in a loss of vital information
about species density across the study area (Johnston
et al., 2015; Nolan, Gilbert, & Reader, 2021). An alternative
to aggregating occurrences to presence–absence data is to
aggregate them into counts of occurrences (i.e., abundance
or pseudo-abundance) at the resolution of the spatial
predictors, an approach that retains information about
species density and can produce better fitting, more
accurate predictive maps (Howard et al., 2014; Johnston
et al., 2015; Nolan, Gilbert, & Reader, 2021). One
problem with this method is that the new aggregated
abundance data are highly likely to be zero-inflated
(ZI) compared with the standard distributions that they
are typically expected to follow (Bird et al., 2014; Martin
et al., 2005), but this can be overcome with the use of ZI
models (Lambert, 1992). ZI models, which have received
relatively little attention in the field of SDM, are able to
cope with such data and have been shown to be able to
both identify causes of sampling bias and facilitate its
removal in simulated species data (Nolan, Gilbert, &
Reader, 2021). Here we use our ATI case study to test
our recently proposed method of sampling bias correction
using ZI models (Nolan, Gilbert, & Reader, 2021).

The aim of this study was to produce the best possible
unbiased prediction of the current distribution of ancient
and veteran trees in England using distribution modeling
and large-scale field validation. This work builds on
previously published research that used only subsets of
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the ATI to make inferences about ancient and veteran
tree abundance and distributions across smaller
geographical areas of the UK or specific types of habitat
(Nolan et al., 2020; Nolan, Reader, et al., 2021). Our work
presented here is the first to use all ancient and veteran
tree records in England across a continuous landscape. In
previous work (Nolan, Reader, et al., 2021), we attempted
to validate models using historical maps, but here we go
a step further and collect new field data. This enables us
to validate the model fully and presents an interesting
opportunity to evaluate independently the effectiveness
of a variety of bias correction methods in relation to our
distribution models, which is something that relatively
few studies attempt. We fit distribution models with a
variety of different bias correction methods, including ZI
models, and evaluate their performance and predictive
power using both common internal model validation
methods and our independently collected, unbiased field
estimates of ancient and veteran tree abundance.
Thorough, independent evaluation of the most robust,
accurate predictive maps of ancient and veteran tree
distribution can assist with future targeted surveys,
provide estimates of the work needed to find undiscovered
trees to add to the ATI for their protection, and help to
estimate the landscape-scale biological value of this
habitat-rich resource as a whole.

METHODS

Study species and environmental
predictors

A grid consisting of 130,754 cells with a resolution of
1 � 1 km was created within the boundaries of England:
This was the maximum total number of grid cells possible
that fell completely within the boundaries. Records were
obtained from the ATI (accessed 17 December 2018)
and were queried and selected as being of “ancient” or
“veteran” status located in the country “England.” All
years were included up to the access date (December
2018). In addition, the ATI has a thorough record
verification process consisting of two steps. First, once
uploaded by a recorder, each record is required to be
revisited by a trained verifier to check the record location
and associated information. Based on this, each record
comes with an additional rating (Appendix S1: Table S1)
concerning its reliability by the ATI managers at the
Woodland Trust (Nolan et al., 2020). We queried
and excluded all records with a rating below three stars,
meaning they are unverified and potentially unreliable.
This left 93,404 ancient and veteran tree records within
our generated grid in England (Figure 1), which composed

our final species data set used throughout the rest of the
analysis. Twenty environmental, topographical, and
anthropogenic characteristics were then collected across
the study area for each 1-km grid cell (Table 1). Four
predictors were categorical (agricultural class, land class,
soil type, and type of historic countryside) and 16
were numeric. See Appendix S1: Tables S2–S5 for a full
explanation of each categorical variable. No strong
correlations were found between any pair of numeric
predictors (Pearson’s correlation coefficient threshold
�0.6, variance inflation factor [VIF] < 5). Each predictor
was converted to raster format at a 1-km resolution. All
processing of predictors was carried out in ArcGIS version
10.3.1 (ESRI, 2018). For a full visual summary of the
complete methodology and the subsequently described
bias correction and modeling processes see Appendix S1:
Figure S1.

Bias correction techniques

Four types of bias correction method were tested, three of
which are conventional presence-only or presence–absence
SDM techniques previously used and evaluated (Beck
et al., 2014; Fourcade et al., 2014; Kramer-Schadt et al.,
2013). These were (1) spatial filtering of occurrence records,
(2) restriction of the selection of pseudo-absence background
data, and (3) the use of bias files in the models (Table 2).
Three methods of spatial filtering were tested, the first of
which was systematic sampling (Beck et al., 2014; Fourcade
et al., 2014), where grids with resolutions of 2, 5, and 10 km
were created with the same extent as that of the occurrence
records. One occurrence record was then randomly sampled
from each 2-, 5-, and 10-km grid cell, resulting in a filtering
of occurrence records from a total of 94,024 to 11,261, 5504,
and 2495 final occurrence records, respectively.

The second method was “cluster analysis” (Fourcade
et al., 2014), whereby all occurrence records within 1 km
of each other were grouped together as a single cluster.
Thus, some records in the same cluster were more than
1 km from each other, but all were <1 km from at least
one other record in the cluster. From each cluster a single
occurrence record was randomly selected and retained.
All records that were farther than 1 km from the next
record and did not fall within a cluster were also
retained, resulting in a final total of 1583 occurrence
records. The final spatial filtering method was “weighted
distances” (Boria et al., 2014; Kramer-Schadt et al., 2013;
Veloz, 2009), where the distance of the nearest record
was calculated for each occurrence location and rescaled
into a probability of weighted distances between 0 and
1. A total of 20,000 occurrence records were then selected
based on these weighted probability distances, so that
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records with large distances to the nearest other record
were more likely to be selected (i.e., had a probability
closer to 1). The processing of the occurrence records for
each of these three filtering methods was carried out
manually in R (R Core Team, 2018) and ArcGIS.

The other two bias correction methods are both types
of manipulation of the selection of the pseudo-absences
from the background when fitting distribution models
but differ based on their requirements. The first method,
background restriction (Table 1), requires no prior
knowledge of sampling bias but involves restricting the
area within which the pseudo-absence data were selected
(Fourcade et al., 2014; Phillips, 2008). This was done by
creating buffer areas around each occurrence point at
distances of 1, 2, 5, and 10 km, within which the pseudo-
absence selection was confined. The second method
employs bias files, which are proxies of likely sources
of bias across the study area (Dudík et al., 2005;
Elith et al., 2010). The bias file is used to influence
the weighted selection of pseudo-absence locations. Six
different potential bias sources were considered (Table 1).

Two of these bias files were record density (number of
trees per grid square) and recorder density (centroid
location of each recorder’s specific records). Having
access to information about recorder locations allows us
to examine true factors that cause sampling bias rather
than just environmental proxies, which is something that
many large databases are unable to do.

The fourth bias correction method is a novel approach
we recently developed (Nolan, Gilbert, & Reader, 2021),
whereby the 93,404 presence-only ATI records were
aggregated into a count of occurrences per 1-km
grid cell (“abundance”) (Figure 1). In some cases it is
likely that this abundance measure is more likely
pseudo-abundance, as in many species databases single
occurrences represent the presence of multiple individuals
at a single location. With the ATI data this is less likely
to be the case because each tree is recorded as a single
individual, so we use the term abundance throughout,
although we acknowledge that pseudo-abundance may be
more appropriate in other cases. This results in 12,687 cells
(9.7%) containing one or more records, with abundance

F I GURE 1 Left: Ancient and veteran tree records across England from Ancient Tree Inventory (ATI). There are 94,024 records in total

(10,450 ancient, 83,574 veteran). Right: Ancient and veteran tree record abundance (counts of records) per 1-km grid square. Abundance

ranges from 0 (blue) to 939 (red).
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TAB L E 1 All 20 predictor variables for each grid cell, along with the type of data, source, and date the data were accessed. There are 16

continuous predictors and four categorical predictors.

Predictor Type Source (date accessed) Justification for inclusion

Historical predictor

Distance from historic
forest (km)

Numeric Neilson, 1940 in The English
Government at Work (Willard and
Morris, 1940)—The Forests:
1327–1336 (2 July 2018)

In the UK certain types of historic sites such
as these are thought to be less likely to
have been deforested, and their ancient
trees are more likely to have been
protected than in the wider countryside
(Farjon, 2017; Rackham, 1976),
particularly due to their continuous royal
or aristocratic ownership over the
centuries (Butler et al., 2002).

Distance from moated
site (km)

Numeric Aberg, 1978—Medieval moated sites
(5 July 2018)

Distance from medieval
deer park (km)

Numeric Rackham, 1976—Trees and Woodland
in the British Landscape
(5 July 2018)

Distance from Tudor deer
park (km)

Numeric The Counties of Britain: A Tudor Atlas
by John Speed (Nicolson and
Hawkyard, 1989)—(3 July 2018)

Type of countryside Categorical Rackham, 1976—Trees and Woodland
in the British Landscape
(5 July 2018)

The divisions in the historical landscape are
likely to influence the management and
persistence of tree populations
(Rackham, 1976). See Appendix S1:
Table S5.

Topographical predictor

Distance from a water
course (km)

Numeric OS Open Rivers V.10/2018 (Vector)
(7 January 2019)

Environmental characteristics such as these
shape the microclimate experienced by
the trees throughout their whole lives
and are likely to influence the species
composition, dispersal, decay, and other
dynamics of ancient and veteran tree
populations (Hall & Bunce, 2011; Hartel
et al., 2018; Williamson et al., 2017).

Mean altitude (m) Numeric Altitude (elevation above sea level in
meters)—WorldClim DEM
(10 May 2018)

Most common soil type Categorical EU Soil Database—World Reference
Base (WRB) for Soil Resources full
soil code (WRBFU)
(24 September 2018)

Anthropogenic predictor

Distance from nearest
town center (km)

Numeric Government Open Data—English
Town Centres 2004 (19 March 2018)

The presence of ancient and veteran trees
across the UK landscape has experienced
strong human influences across many
centuries (Farjon, 2017; Rackham, 1976;
Williamson et al., 2017). Therefore, it is
likely that proximity to towns, cities, and
roads would have shaped the planting
and management of ancient and veteran
trees. Additionally, many of these
characteristics also are likely to influence
ancient and veteran tree sampling due to
issues around accessibility, favoring
certain sites, and so forth (Mair & Ruete,
2016; Reddy & D�avalos, 2003).

Distance from nearest
major city (km)

Numeric Office of National Statistics (ONS)—
Major Towns and Cities 2015
(29 November 2017)

Distance from
commons (km)

Numeric Government Open Data—Commons
register 2015 (18 December 2018)

Distance from major
road (km)

Numeric Government Open Data—Major Road
Network 2016 (5 November 2017)

Length of minor
roads (km)

Numeric OS Open Map Local V.10/2018
(Vector)—Road (7 January 2019)

Land classification predictor

Cover of ancient
woodland (%)

Numeric Natural England—Ancient Woodlands
(England) inventory
(8 January 2018)

Ancient and veteran trees can sometimes be
found in woodland (especially ancient
woodland [Peterken, 1977]) and so could
be an important habitat in which they
are present (Lonsdale, 2013).

Cover of forest or
woodland (%)

Numeric Government Open Data—National
Forest Inventory (NFI) 2016
(4 December 2017)

(Continues)
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ranging from 0 to 939 trees per 1-km grid cell. Aggregating
to count data allowed ZI models to be fitted to the pseudo-
abundance data and used to both identify and correct for
sampling bias (Nolan, Gilbert, & Reader, 2021.).

Modeling and analysis

MaxEnt presence-only models were fitted to the 93,404
ancient and veteran tree occurrence records under each of
the presence-only bias correction methods (spatial filtering,
background manipulation and bias files) at a 1-km resolu-
tion using the ENMeval package in R (Muscarella
et al., 2014). An additional model with no bias correction
(i.e., the raw occurrence data) was also fitted for compari-
son. All models were fitted using 10,000 pseudo-absence
background points, which were randomly sampled across
the study area unless explicitly different due to the bias cor-
rection method. All other MaxEnt parameters were left at
their default values (Phillips & Dudík, 2008). Model tuning
was also undertaken, and the best fitting model for each
bias correction method selected based on the corrected
Akaike information criterion (AICc) (Appendix S2: Section-
S2). All 20 predictors (Table 1) were used for each model,
but for models using bias files based on one or more of the
predictors (towns and cities, roads, altitude, or wood-
pasture bias files), models were fitted both with and with-
out those particular predictors for comparison.

Model predictions were created for each MaxEnt
model and evaluated using 10-fold cross-validation (CV),
where the data are randomly split into 10 parts, with
each part sequentially acting as the “test” data during
internal model evaluation, while the other nine are used
to train the model. Initial analysis (not shown) was
used to evaluate alternative nonrandom methods of
geographically splitting the data into training and test data,
but these proved less effective than CV (Appendix S2:
Figure S1). Models were evaluated using AICc and area
under the curve (AUC) for the training and test data. AICc

is a test of model fitting and performance based on
goodness of fit and its ability to avoid overfitting and can be
used to compare between the fit of different models
(Akaike, 1973). AUC, on the other hand, is a measure of a
model’s predictive power based on the ROC (receiver oper-
ating characteristic) curve and its ability to correctly classify
observations across all possible thresholds of classification
of the probability of presence (Fielding & Bell, 1997; Lobo
et al., 2008). AUC has been criticized as an evaluation met-
ric of distribution modeling (Lobo et al., 2008; Peterson
et al., 2008), yet it remains one of the most widely used eval-
uation methods in SDM.

For the fourth bias correction method (ZI models), ZI
models were fitted to the pseudo-abundance data. ZI
models are an extension of generalised linear models
(GLMs) and combine two components: (1) a zero compo-
nent, which models the probability that an observation is

TAB L E 1 (Continued)

Predictor Type Source (date accessed) Justification for inclusion

Cover of traditional
orchard (%)

Numeric Natural England—Traditional Orchards
HAP England (10 January 2018)

Ancient and veteran trees have strong
connections to wood-pasture habitat
(Hartel et al., 2013) and traditional
orchards (Williamson et al., 2017).

Cover of wood
pasture (%)

Numeric Natural England—Wood Pasture and
Parkland BAP Priority Habitat
Inventory (4 December 2017)

Distance from nearest
National Trust
site (km)

Numeric National Trust—Open data: limited
access land and always open land
(8 January 2019)

The National Trust is a large organization in
the UK that holds vast areas of land with
historic or natural interest and therefore
have strong links to ancient and veteran
trees (Nolan et al., 2020).

Most common
agricultural
classification

Categorical Natural England—Provisional
Agricultural Land Classification
England 2013 (13 April 2018)

Land-use change, agricultural
intensification, and urbanization
represent significant influences on
ancient and veteran tree decline around
the world (ATF, 2005, 2011; Fay, 2002;
Lonsdale, 2013; Read, 2000). In addition,
tree populations have specialized niche
requirements to grow and survive and
are therefore likely to be adapted to
particular environmental conditions
relating to specific land types
(Williamson et al., 2017).

Most common land
classification

Categorical Centre for Ecology and Hydrology
(CEH)—Land Cover Map 2015
(LCM2015, 1 km dominant target
class) (29 March 2017)
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an excess zero, and (2) a count component, which pro-
duces the count estimates (Lambert, 1992; Welsh
et al., 1996; Zuur et al., 2009). Because there are two
parts, processes generating true zeroes and excess (poten-
tially false) zeroes can be modeled separately (Zuur
et al., 2009). When used for SDM with species abundance
data suffering from sampling bias, the zero component
can model the probability that an abundance of zero at a
particular location is truly zero or not, and the count
component can then produce an estimate of true abun-
dance at that location (Nolan, Gilbert, & Reader, 2021).
Therefore, ZI models have great potential to model geo-
graphically biased species data and to allow examination
of the sources of bias, if unknown, as well as producing
predictive SDM maps free of bias. Several studies have

used ZI models to examine sampling bias in species data
(Dwyer et al., 2016; Tiago, Ceia-Hasse, et al., 2017;
Williams et al., 2016), but none has used this method to
produce prediction maps from real species data.

ZI models were fitted with either a Poisson or negative
binomial (NB) distribution. Both error distributions are
commonly used for count data and can be applied within
a ZI model framework (Zuur et al., 2009). A NB distribu-
tion allows for more overdispersion in the data than the
Poisson distribution and can account for some (but often
not all) of the excess zeroes in ZI data sets through the use
of an extra parameter (ϴ) (Fisher, 1941). Therefore, it may
be more appropriate to use this distribution if there is
biological aggregation in the data (Lindén & Mäntyniemi,
2011). However, it is important to note there can be

TAB L E 2 Types of bias correction method applied to ancient tree inventory records when modeling the distribution of ancient and

veteran trees across England.

Method Type Description

Spatial filtering Systematic sampling Randomly sampling one occurrence point per grid cell of 2-, 5-, or 10-km
resolution

Cluster analysis Randomly sampling one occurrence point per grouped cluster of records
within distance of 1 km

Weighted distance Sample 20,000 occurrence points based on weighted probabilities of distance
to nearest other occurrence location. Occurrences with greater distances to
other occurrence locations were more favored in the selection process

Background
restriction

Restricting background
selection area

Restricting the area within which pseudo-absences are randomly chosen by
creating buffers at varying distances (1, 2, 5, and 10 km) around each
occurrence location. Pseudo-absences generated were then confined solely
to these areas

Bias files Recorder location Weighted probability surface for selection of 10,000 pseudo-absence points
based on kernel density analysis of locations of recorder home bases
(centroid locations of all records uploaded by each recorder)

Density of towns and cities Weighted probability surface for selection of 10,000 pseudo-absence points
based on kernel density analysis of locations of all town and city centroids
across England

Density of roads (major and
minor)

Weighted probability surface for selection of 10,000 pseudo-absence points
based on kernel density analysis of all major and minor roads across
England

Altitude Weighted probability surface created by rescaling altitude values at 1-km
resolution across England for selection of 10,000 pseudo-absence points

Distance to nearest of wood
pasture

Weighted probability surface for selection of 10,000 pseudo-absence points
based on 1-km resolution raster layer of distance to nearest wood-pasture
across England

Record density (abundance of
records per 1-km grid cell)

Weighted probability surface for selection of 10,000 pseudo-absence points
based on record density per 1-km grid cell (i.e., abundance of ancient and
veteran tree records)

Zero-inflated (ZI)
regression models

Use of “pseudo-abundance” Aggregating presence records to a count of “pseudo-abundance” at a
resolution of 1 km and fitting ZI models to identify and correct for
sampling bias (Nolan, Gilbert, & Reader, 2021); predictions of abundance
for each grid cell can be used to create distribution map of ancient and
veteran trees across England

8 of 22 NOLAN ET AL.
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other causes of overdispersion in ecological data,
such as the scaling of nonhomogeneous processes or
nonindependence in the data (Richards, 2007). In our
case, the pseudo-abundance data show huge overdispersion,
indicated by a variance: mean ratio of 122.7 (with ratios
over 1 suggesting overdispersion). Therefore, it is likely that
a NB distribution will be more appropriate, even if there is
still zero inflation. The performance of each model was
compared using Vuong’s AICc test for nonnested models
(Vuong, 1989).

All environmental predictors were included as main,
linear effects in both components (count and zero) of the
ZI models in order to examine both the potential influence
of each predictor on both species’ ecology and sampling
behavior (Table 1). All numeric predictors were centered
and scaled. Several categories from the categorical
variables soil type, agricultural class, and land class were
combined to aid model fitting. Therefore, there were three
agricultural classes (agricultural, nonagricultural, and
other), 10 land classes (arable, grassland, urban, coniferous,
coastal, freshwater, saltwater, heather/bog, broadleaved,
and other), and 10 soil types (luvisol, cambisol, gleysol,
fluvisol, podzol, leptosol, arenosol, histosol, urban, and
other). All models were fitted in R using the pscl package
(Zeileis et al., 2008). No collinearity was found in the
model residuals (generalized VIF [GVIF] <10), and spatial
autocorrelation was low, with weak correlations between
latitude and longitude and model residuals (�0.015).

A ZI model is capable of producing three types of
predictions: (1) a prediction of abundance from the count
component, (2) a prediction of abundance from the whole
model, taking into account the processes generating the
excess zeroes, and (3) a probability prediction (known as
the zero prediction) that an observation is an excess zero.
If all zeroes are true zeroes (i.e., there are no false
absences), then the most accurate prediction of both
observed and true abundance will be the second of these
(abundance from the whole model) because the excess
zeroes are the result of some underlying biological process.
However, if a proportion of the excess zeroes results
from sampling bias, then the count component prediction
(hereafter known as the count prediction) may be a more
accurate representation of the true species abundance, and
the whole model prediction will partly reflect the processes
underlying the sampling bias in the observed data.
Therefore, the whole model prediction of abundance can
provide insight into the sources of sampling bias in the
model, whereas the count prediction provides estimates of
abundance free from bias (Nolan, Gilbert, & Reader,
2021). Because the level of sampling bias in the ATI is
unknown, both types of predictions could be informative
and therefore were evaluated separately (Nolan, Gilbert, &
Reader, 2021).

Model cross-validation predictions (both count and
whole model predictions of abundance) from the ZI
models of ancient and veteran tree abundance for each
1-km grid cell were created using 10-fold cross-validation,
as described earlier. Predictions were evaluated using
Spearman’s rank correlation between predictions and
raw abundance, root-mean-square log error (RMSLE),
and training and test AUC. For each CV fold, training
and test AUC were calculated by converting the abundance
predictions from the Poisson and NB models into presence–
absence predictions. The threshold chosen for this was
allowed to vary across models and was the mean predicted
abundance across all grid squares per model. The mean was
chosen to create a more balanced data set of presences and
absences to aid calculation of AUC.

Field surveys and model verification

A set of 90 1-km grid cells was selected across England
for further independent model verification using
field surveys. These squares comprised two groups:
(1) 50 squares were selected completely at random so that
there would be no additional sampling bias in the results
and (2) 40 squares were selected based on model predictions
to ensure that, despite the high proportion of squares
containing no trees, there was good representation in the
sample of squares with existing tree records in the ATI or
predicted tree presences that could be verified. These
40 squares were selected using the highest performing ZI
model abundance predictions (from the NB model). The ZI
NB predictions were first categorized as being either low or
high predicted abundance based on a threshold of the mean
predicted probability that a square contained zero records
(i.e., the mean zero prediction from the ZI model across
each grid square). Then each square was categorized into
one of four groups: (1) no ATI records and low predicted
abundance, (2) no ATI records and high predicted
abundance, (3) ATI records and low predicted abundance,
and (4) ATI records and high predicted abundance. From
each group 10 squares were randomly selected, resulting
in the 40 ZI model squares.

Each of the 90 squares was assessed for accessibility
using aerial maps and photography. If a square was
deemed completely inaccessible (no roads or public rights
of way present), then it was discarded and another square
selected in the same manner (n = four out of 90). A
survey form was created for each square containing
details about location, what to record (number and
location of ancient and veteran trees, date of survey,
photographs), how to record any trees found on the form,
possible car parking spaces for the recorder during the
survey, and all roads and public rights of way. Recorders

ECOLOGICAL APPLICATIONS 9 of 22
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were also encouraged where possible to record species or
genera of the trees found, although this was not included
in the analysis in this study because of the relatively low
number of individuals of each different species recorded
(Appendix S1: Figure S2). This was likely because of the
difficulty in identifying tree taxa when out of leaf during
the late autumn/winter months, as well as problems
classifying any trees that were recorded from a distance
because of accessibility issues.

The aim of each survey was to cover each 1-km grid
as completely and thoroughly as possible, using multiple
trips if necessary and binoculars to view areas from afar
that were not accessible. To maximize the chances that
every ancient and veteran tree in the square was found
during the surveys, areas of interest were designated on
each survey form to help the recorders avoid wasting
their time sampling areas with a very low likelihood of
ancient trees, for example, industrial parks, new housing
estates, and open fields, determined using aerial
photography and Ordnance Survey OpenStreetMaps.
Only those areas deemed very unlikely to have any trees
(or at least any ancient or veteran trees) were not
covered under an area of interest. Therefore, we
assumed that if all areas of interest had been surveyed
with 100% coverage, then all ancient and veteran trees
had been found. Each survey required the recorder to
note the time spent surveying the whole square and
each individual area of interest, as well as estimating
the percentage from each area of interest that was
covered during the survey. Any parts of the whole
square that were not surveyed were the result of not
being an area of interest, accessibility issues, or owing to
a lack of time of the recorders.

Recorders comprised a range of volunteers from
different sources, including the Ancient Tree Forum,
Woodland Trust staff members, Woodland Trust ancient
tree recorders, Woodland Trust ancient tree verifiers, and
other independent volunteer ancient tree enthusiasts.
Initially one square was assigned to each recorder,
according to geographical proximity to their home,
although some recorders completed several squares if no
other recorder lived sufficiently close to that square. The
recorders had no prior knowledge of any model predic-
tions. Unfortunately, although squares were first assigned
from March, due to extensive COVID-19-based travel
restrictions at various points throughout 2020, many
recorders assigned to squares were unable to complete
them, and 39 out of 90 squares were completed by a total
of 32 separate volunteers (Appendix S1: Figure S3). An
additional 13 squares were completed by the authors,
resulting in a total of 52 squares of the initial 90 (58%)
being completed (Appendix S1: Figure S3). Although the
authors had prior knowledge of the model predictions,
care was taken wherever possible to carry out the surveys

impartially. All surveys were carried out throughout
the months of August to December, travel restrictions per-
mitting, during daylight hours.

Three metrics were obtained from the field work
results: (1) whether ancient or veteran trees were present
or absent in each square (presence–absence), (2) raw
abundance of ancient and veteran trees found in each
square, and (3) estimated density of ancient and veteran
trees per square in relation to survey effort of volunteer
(number of ancient and veteran trees/estimated total area
of the whole grid square surveyed in square meters).
Presence–absence metrics were analyzed using AUC in
relation to each of the model predictions of either habitat
suitability (MaxEnt models) or abundance (ZI models).
For this, the ZI model abundance predictions were
converted to binary presence–absence form based on a
threshold of the median prediction across all 90 grid
squares. Median was chosen here instead of mean because
several abundance predictions were extremely high and
would therefore have skewed the mean, resulting in the
majority of predictions being classed as absences. The raw
abundance and density field work metrics were analyzed
using Pearson’s (r) and Spearman’s (rs) correlation coeffi-
cients, and both coefficients were used to examine the
effects of two potential outliers. AUC was selected based
on the necessity of having a metric that could compare the
predictions of abundance and habitat suitability; it is much
more feasible to convert abundance to presence–absence
rather than the other way around. This metric is not
perfect and is likely to result in a loss of information
from the ZI models. Using the correlations provides an
alternative, albeit crude, method of direct assessment of
the predictions against field verification results.

To calibrate the models and provide total estimates of
ancient and veteran tree numbers across England, a linear
regression model (Gaussian distribution, link = identity)
was fitted for each set of model predictions for the 52
surveyed grid squares in relation to either raw tree
abundance or tree density from the field surveys. Each of
these linear regression models was then used to calibrate
each model’s predictions for all of the grid squares across
England in order to provide predictions of abundance or
tree density in each grid square. These estimates were then
summed across all grid squares to predict the total number
of ancient and veteran trees across England.

RESULTS

Model fitting and performance using
internal model validation

All of the models were broadly supported by internal
validation and allowed us to identify important predictors
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 19395582, 2022, 8, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2695 by U

niversity O
f N

ottingham
, W

iley O
nline L

ibrary on [15/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



of spatial patterns in the abundance of ancient and
veteran trees. A detailed comparison of how the models
performed is given in what follows, but we focus first on
describing the results of the ZI NB model, which
performed well in internal validation and gave insights
into the predictors of not only tree abundance (via the
count component) but also sampling bias (via the excess
zero component). Ancient and veteran tree abundance
from the ZI NB model was found to be positively
associated with higher altitudes, being closer to Tudor
deer parks, commons (land owned collectively by many
people with traditional shared grazing or harvesting
rights), and National Trust sites (Table 3). Higher
abundance was also associated with being farther away
from towns and cities, having a greater coverage of forest
and wood pasture but less coverage of orchard, and being
associated with fewer minor roads (Table 3). Abundance
also differed significantly across agricultural class,
countryside type, land class, and soil type and was most
likely to be highest on nonagricultural, freshwater, or
broadleaved land classes and fluvisol soil type (Table 3).

Potential predictors of sampling bias (inferred from
the ZI NB zero component) suggest that the likelihood
that a square is an excess zero (e.g., potentially
unsampled) increase with increasing coverage of minor
roads, wood pasture, orchard, ancient woodland, and for-
est (Table 3). Squares were also more likely to be excess
zeroes if they were farther from watercourses, historic
forests, and moated sites and were closer to commons,
National Trust land, and medieval and Tudor deer parks.
The likelihood that a square has not been sampled also
increased if the square was at a lower altitude and covered
certain land types, soil classes, and countryside types com-
pared to others (Table 3). Interestingly, moated sites, historic
forests, medieval deer parks, ancient woodland, and water-
courses had a significant influence only in the zero compo-
nent, suggesting they are stronger influences on sampling
than on the true underlying ecology determining the tree
distribution.

Internal model validation suggests that the highest
performing bias correction method based on AICc was
the cluster analysis spatial filtering technique, followed
by systematic sampling at a 5- and 10-km resolution
(Figure 2a). All other spatial filtering methods also
performed better than the model with no bias correction.
Similarly, ZI models performed well compared to other
methods, particularly when using a NB distribution. All
other bias correction methods showed little difference
compared to a model with no bias correction. The most
effective bias file was record density, followed by altitude
and wood pasture (Figure 2a), with the least effective
being towns and cities. Nevertheless, the differences
among all bias files were relatively small. There was also

little difference between the background restriction
methods, all of which performed relatively poorly.

When tested against the data used to build the models
using AUC, there appeared to be little improvement in
model predictive power when using any bias correction
method in relation to the model with no bias correction
(Figure 2b,c). Nevertheless, models fitted with bias
files provided the best predictions overall based on both
training and test AUC, particularly those using altitude,
wood pasture, and roads. Background restriction using a
10-km buffer was the best background manipulation
method, and weighted distance was the best spatial
filtering method. ZI models performed relatively poorly
based on predictive power compared to all other models,
although, as mentioned in the methods, this could have
been because of the loss of information when converting
abundance to presence–absence to calculate AUC.

As suspected, the ZI NB model provided a better fit to
the data than the ZI Poisson model (Vuong AICc test:
Z = �22.72, p < 0.001; NB AICc = 128,783.0, df = 80;
Poisson AICc = 290,932.5, df = 81). Evaluation of model
predictions using internal model validation showed
support for the NB model having overall greater predictive
power compared to the Poisson model (Figure 2b,c).
Additionally, as well as the NB model outperforming the
Poisson model, the whole model predictions showed
stronger correlations to the raw data (Poisson rs = 0.257
and NB rs = 0.277) than the count predictions (Poisson
rs = 0.203 and NB rs = 0.226), as well as lower error
margins (whole model prediction RMSLE: Poisson—0.566,
NB—0.583; count prediction RMSLE: Poisson—1.492,
NB—0.706). This could be because the excess zeroes,
in addition to being the result of sampling bias, are
sometimes caused by ecological processes (e.g., biological
aggregation), so excluding the zero component completely
from the model predictions (as in the count prediction)
might remove important biological information from the
abundance prediction. Nevertheless, it could also be the
result of other processes, for example, a poor choice of
predictors of abundance or unexplained variation from
human factors.

Model validation using independent
random field surveys

New independent surveys of 52 1-km grid squares
resulted in a total of 459 ancient and veteran trees being
recorded (94 ancient and 365 veteran), 285 of which had
not previously been recorded in the ATI. Before the
surveys, only 15 of 52 squares had records of ancient or
veteran trees, but this number was increased to 38 of
52 following the surveys. Seven squares received 100%
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TAB L E 3 Model coefficients (�SE), Z values, and indication of the p value of significance are shown for negative binomial zero-inflated

model for both count and zero components.

Model predictor

Count component Zero component

Coefficient (�SE) Z value Coefficient (�SE) Z value

Intercept �3.276 (0.670) �4.893*** �3.704 (1.330) �2.785**

Agricultural class—agricultural 0.601 (0.279) 0.031* �0.894 (0.359) �2.490*

Agricultural class—nonagricultural 0.703 (0.283) 0.013* �0.338 (0.368) �0.918

Altitude 0.074 (0.033) 0.026* 0.147 (0.039) 3.809***

Type of countryside—ancient 0.036 (0.045) 0.431 �0.669 (0.060) �11.20***

Type of countryside—highland �0.328 (0.067) �4.926*** �0.610 (0.091) �6.672***

Type of countryside—Cornwall 0.088 (0.135) 0.514 1.413 (0.141) 10.02***

Landclass—broadleaved 2.349 (0.597) 3.937*** 0.416 (1.031) 0.403

Landclass—heather/bog 1.529 (0.610) 2.509* 1.031 (1.031) 0.999

Landclass—saltwater 2.072 (0.753) 2.752** 1.664 (1.137) 1.465

Landclass—freshwater 2.783 (0.637) 4.368*** 0.639 (1.066) 0.600

Landclass—coastal 1.268 (0.684) 1.855 1.654 (1.090) 1.517

Landclass—coniferous 2.100 (0.604) 3.477*** 1.963 (1.031) 1.904

Landclass—urban 2.322 (0.596) 3.893*** 1.109 (1.024) 1.083

Landclass—arable 1.991 (0.594) 3.355*** 0.802 (1.019) 0.787

Landclass—grassland 2.152 (0.593) 3.627*** 0.625 (1.019) 0.614

Soil type—luvisol 0.455 (0.123) 3.699*** 0.692 (0.213) 3.246**

Soil type—cambisol 0.227 (0.122) 1.857 0.702 (0.212) 3.303***

Soil type—gleysol 0.310 (0.124) 2.498* 0.912 (0.215) 4.241***

Soil type—fluvisol 0.574 (0.158) 3.638*** 1.242 (0.239) 5.207***

Soil type—podzol 0.360 (0.147) 2.449* 0.852 (0.253) 3.364***

Soil type—leptosol 0.406 (0.137) 2.953** 0.434 (0.228) 1.905

Soil type—arenosol 0.022 (0.157) 0.139 0.681 (0.262) 2.601**

Soil type—histosol �0.573 (0.295) �1.943 1.366 (0.350) 3.900***

Soil type—urban 0.266 (0.140) 1.894 1.200 (0.249) 4.812***

Tudor deer park �0.130 (0.029) �4.494*** 0.500 (0.036) 13.92***

Moated site �0.050 (0.034) �1.477 �0.321 (0.037) �8.639***

Historic forest 0.003 (0.022) 0.146 �0.252 (0.029) �8.632***

Medieval deer park �0.041 (0.021) �1.955 0.080 (0.028) 2.874**

National Trust �0.380 (0.021) �17.71*** 0.275 (0.028) 9.644***

Cities 0.120 (0.025) 4.856*** 0.012 (0.032) 0.383

Towns 0.095 (0.028) 3.391*** �0.016 (0.034) �0.486

Commons �0.096 (0.017) �5.545*** 0.079 (0.024) 3.265**

Major roads 0.013 (0.023) 0.566 �0.050 (0.028) �1.755

Cover of forest 0.226 (0.028) 8.177*** �0.312 (0.039) �8.057***

Cover of ancient woodland �0.009 (0.018) �0.478 �0.475 (0.071) �6.696***

Cover of orchard �0.020 (0.010) �1.990* �0.778 (0.097) �8.014***

Cover of wood pastures 0.374 (0.012) 31.93*** �18.99 (3.498) �5.431***

Watercourse 0.030 (0.016) 1.883 �0.293 (0.024) �12.08***

Minor roads �0.117 (0.026) �4.473*** �0.653 (0.050) �13.13***

Log (θ) �2.105 (0.019) �113.1*** … …

*** p < 0.001.
** p < 0.01.
* p < 0.05.
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survey coverage, and 32 squares (62%) had at least 50%
of their area surveyed (Appendix S1: Figure S4). Accessi-
bility was an issue for some squares, although only three
squares received a survey coverage of <20%.

Calibrated predictions of the total number of ancient
and veteran trees across England are very similar across
all models, with around two million trees (1.7–2.1 million)
predicted based on the estimated tree density (which
accounts for estimated survey effort) from the field
validation from all models (Table 4). This prediction
ranges from 1,725,977 when using the spatial filtering
technique, cluster analysis, to 2,088,979 when using the
wood-pasture bias file (so the range across all models is
363,002 trees). Predictions of the total number based on
the raw abundance with no correction for survey effort
are obviously lower and range from 826,052 with the
wood-pasture bias file to 1,120,545 (towns and cities bias
file) (Table 4).

As with the ZI models, the most important predictor
of ancient and veteran tree habitat suitability across all
MaxEnt models was the cover of each square by wood
pasture, which was especially true for the uncorrected
model (Table 5), where it accounted for over 66% of
variable importance. Other important predictors in the
uncorrected model included National Trust land, cover of
forest or ancient woodland, and soil type (Table 5). When
using the optimum sampling bias correction method
(systematic sampling—see following discussion for more
information), wood-pasture variable importance dropped
significantly by almost 50%, although it was still the
most important variable. Other big changes included
an increase in permutation importance of the type of
countryside and the distance to a Tudor deer park, both
by 11% (Table 5). The most important predictors of
ancient and veteran trees from the systematic sampling
model were therefore similar to those of the ZI models

F I GURE 2 (a) Corrected Akaike information criterion (AICc),

(b) training area under curve (AUC), and (c) testing area under

curve (AUC) for each species distribution model of ancient and

veteran trees across England using four main types of bias

correction method (spatial filtering, background restriction, bias

files, and zero-inflated [ZI] models) (see Methods for more

information). Where the chosen bias source is also a model

predictor, models were fitted with and without the predictor;

models missing the predictor are indicated with “2.” The two
(ZI) models were fitted using either a Poisson or a negative

binomial (NB) distribution. Predictions of both abundance from the

count component (“count predictions”) and whole model (“whole
model predictions”) are shown. Error bars represent � variance.
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and included wood-pasture cover, cover of forest,
distance to a Tudor deer park, type of countryside, and
the presence of minor roads.

Prediction maps of ancient and veteran tree distributions
from models using bias correction showed substantial
differences compared to the uncorrected model (Figure 3,
see Appendix S1: Figures S6 and S7 for maps from all
models), with much more variation in habitat suitability
across England when using systematic sampling (Figure 3).
The systematic sampling model prediction maps at scales of
2 and 5 km suggest that there are more areas with high
suitability, especially in the southeast of England, the Lake
District, and Herefordshire. In contrast, the bias file models

using record density or wood-pasture habitat suggest
there are relatively few areas of high suitability, many of
which are actually wood pastures (Figure 3). Prediction
maps of abundance from the ZI models are displayed
in Figure 4 and show some areas of high suitability,
particularly around London and the New Forest National
Park in the south. Maps of the zero predictions from the
ZI models provide interesting insight into areas with high
numbers of excess zeroes, where trees are likely to have
been particularly under-recorded. These maps suggest
under-recording in much of Cornwall and Devon, Norfolk,
and other counties in the East of England and in parts of
Northumberland.

TAB L E 4 Independent field evaluation of model predictions. Model predictions were evaluated against (a) field verification estimates of

presence–absence (P–A) of ancient and veteran trees per square using area under the curve (AUC), (b) field estimates of raw tree abundance

(total number of trees recorded per square) using Pearson’s (r) and Spearman’s (rs) correlation coefficient tests, and (c) field estimates of tree

density (number of trees in relation to estimated percentage cover of each square) also using Pearson’s and Spearman’s correlation
coefficient tests. See Methods for a detailed description of each bias correction method.

Model
P–A

Tree abundance Tree density

AUC r rS T r rS T

None 0.613 0.589*** 0.339* 911,842 0.490*** 0.410** 1,867,480

ZI Poisson (count) 0.549 0.804*** 0.190 873,219 0.667*** 0.216 1,830,904

ZI Poisson (whole) 0.549 0.865*** 0.286* 831,650 0.715*** 0.329* 1,791,807

ZI NB (count) 0.600 0.929*** 0.223 837,739 0.763*** 0.275* 1,800,014

ZI NB (whole) 0.500 0.930*** 0.270 831,096 0.765*** 0.345* 1,792,819

SS 2 km 0.658* 0.239 0.431** 1,054,659 0.354** 0.534*** 1,930,281

SS 5 km 0.664* 0.222 0.429** 1,045,737 0.421** 0.528*** 1,862,409

SS 10 km 0.626 0.245 0.382** 1,051,987 0.391** 0.476*** 1,912,788

Cluster analysis 0.618 0.642*** 0.378** 842,714 0.666*** 0.476*** 1,725,977

Weighted distance 0.557 0.442*** 0.224 1,008,806 0.366** 0.284* 1,961,867

Buffer 1 km 0.597 0.919*** 0.185 1,091,502 0.749*** 0.209 2,042,407

Buffer 2 km 0.614 0.852** 0.335* 991,488 0.712*** 0.390** 1,943,748

Buffer 5 km 0.618 0.377** 0.309* 991,114 0.310* 0.362** 1,945,543

Buffer 10 km 0.602 0.400** 0.199 975,943 0.326* 0.259 1,932,274

Recorder density 0.586 0.463*** 0.215 975,943 0.383** 0.251 1,894,780

Record density 0.443 0.584*** 0.251 957,948 0.529*** 0.319* 2,010,821

Towns and cities 2 0.470 0.156 0.080 1,097,494 0.135 0.110 2,045,136

Towns and cities 0.395 0.090 0.229 1,120,545 0.076 0.258 2,069,004

Roads 2 0.556 0.464*** 0.179 1,008,015 0.382** 0.215 1,962,109

Roads 0.446 0.207 0.125 1,001,956 0.169 0.163 1,956,314

Altitude 2 0.591 0.627*** 0.308* 964,732 0.532*** 0.346* 2,049,180

Altitude 0.468 0.102 0.131 964,732 0.082 0.187 1,915,020

Wood pastures 2 0.621 0.869*** 0.396** 1,141,381 0.755*** 0.473*** 2,088,979

Wood pastures 0.656* 0.708*** 0.359** 826,052 0.582*** 0.421** 1,788,310

Note: Values in bold represent those that are significant. Where indicated, significance levels are: *p < 0.05, **p < 0.01, ***p < 0.001. For each model the total
predicted abundance of ancient and veteran trees (T) across England was calculated from a linear regression model between the model predictions and field
verification data (both raw tree abundance and tree density) for the 52 surveyed squares.
Abbreviations: NB, negative binomial; SS, systematic sampling; ZI, zero-inflated.
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Many of the bias-corrected models produced predictions
that strongly correlated with the field estimates of ancient
and veteran tree abundance or tree density, and bias
correction substantially improved the predictive power of
the distribution models compared to the uncorrected model
(Table 4). However, the evaluation of the performance of
each model when predicting the raw abundance or density
of ancient and veteran trees depended heavily on whether
the raw values (Pearson correlation coefficients) or ranked
values (Spearman correlation coefficients) were used. This
discrepancy was caused by two outlier squares with
extremely high predictions of abundance that were likely
inflating the accuracy of the raw predictive power of some
of the models (e.g., ZI) when evaluated with Pearson’s
correlation (Appendix S1: Figure S5).

Field estimates of both raw tree abundance and
density based on the Spearman ranked correlations
provided good support for the spatial filtering bias
correction technique, systematic sampling, and showed
significant, strong correlations with model predictions,
particularly at 2- and 5-km resolutions (Table 4). The
only other methods that increased model predictive power
relative to the uncorrected model were the cluster analysis
spatial filtering technique and the wood-pasture bias file
(Table 4). When evaluated using estimates of survey
effort (i.e., against tree density) rather than with the raw
abundance of trees per grid square, all these techniques
produced predictions with stronger correlations to the
field estimates, and the best bias correction was still
systematic sampling at either a 2- or 5-km resolution,
although using the wood-pasture habitat as a bias file
also produced good results (Table 4).

When considering the raw Pearson correlation coeffi-
cients, the ZI models performed much better in comparison
with the uncorrected model, with very strong correlations
between field estimates of both abundance and density
and model predictions (Table 4). This is especially true of
the ZI NB model, and, based purely on this evaluation
metric, the ZI NB appeared to be the best method of
all to deal with sampling bias. However, because of the
outlier grid squares (Appendix S1: Figure S5), Spearman
correlations are likely a better measure of performance,
but it is interesting to see the high performance of the ZI
models at correctly predicting squares with very high
abundances of trees (Appendix S1: Figure S5).

DISCUSSION

In this study, we have presented a rare empirical test of
the ability of models fitted using a large citizen-science
species database to provide an unbiased prediction of the
distribution of ancient and veteran trees across a large
geographic area. Our results using robust independent
field verification methods showed that there are indeed
many undiscovered ancient and veteran trees across
England and that only a small proportion of the ancient
and veteran tree population has been mapped. By
evaluating and selecting the best bias correction methods to
apply to our distribution models, we can produce accurate
predictive maps of the locations of these previously
unknown trees to inform future targeted surveying and
conservation plans for these valuable components of
terrestrial biodiversity.

It has long been suspected that there are many
unrecorded ancient and veteran trees across England
with great ecological importance in terms of their dead-
wood habitats and associations with saproxylic species

TAB L E 5 Permutation importance of each of the maximum

entropy (MaxEnt) distribution model predictors shown for model

with no bias correction compared to overall best performing bias-

corrected model using systematic sampling (SS) at 2-km resolution.

The percentage change in permutation importance between the

two models is also shown, with positive values representing

variables that become more important when bias is corrected for

and negative values are less important.

Predictor

Permutation
importance

Percentage
change

No
correction

SS
(2 km)

Agricultural class 0.209 1.230 1.021

Altitude 0.528 1.866 1.338

Type of countryside 0.193 11.86 11.667

Land class 1.734 1.929 0.195

Soil type 5.473 7.526 2.053

Tudor deer park 2.196 13.47 11.274

Moated site 0.000 1.249 1.249

Historic forest 0.010 3.893 3.883

Medieval deer park 0.703 0.143 �0.56

National Trust 7.947 6.560 �1.387

Cities 0.297 0.927 0.63

Towns 0.000 0.640 0.64

Commons 0.112 0.595 0.483

Major roads 0.007 0.506 0.499

Cover of forest 6.997 14.88 7.883

Cover of ancient woodland 5.672 1.856 �3.816

Cover of orchard 0.010 0.246 0.236

Cover of wood pastures 66.20 18.83 �47.37

Watercourse 0.801 3.556 2.755

Minor roads 0.909 8.247 7.338
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(Butler et al., 2002; Fay, 2004; Read, 2000). Our study
provides strong support for the existence of these trees
and demonstrates that taking a comprehensive, targeted
survey approach is an excellent method for this purpose.
Our field surveys covered a very small percentage of
the area of England (0.04%), yet they increased the
number of known ancient and veteran trees by a total of
285 records, more than a 100% increase in the number of
trees recorded in the ATI in these locations before the
surveys. From these surveys alone we have seen clear
large gaps in our knowledge of the current distributions
of these trees, suggesting that many of them may remain
unaccounted for in current strategies for protection,
ecological monitoring, and management. This is true
despite the fact that in the UK such trees are much better
recorded at the level of the individual than they are in
most other parts of the world. Based on this study, future
surveys following similar, partially randomized protocols,
or ideally and if possible completely randomized
protocols that aim for 100% survey coverage of a targeted
specific area would greatly improve the discovery rate of
the trees across the landscape.

Based purely on the raw abundance of trees recorded
during the surveys, total estimates of ancient and veteran
trees across England were around one million, more than

five times the number currently in the ATI. However,
when estimates of sampling effort for each square were
factored in, to account for the parts of each square that
were inaccessible in the field survey, the estimated total
based on tree density is around two million trees for
several models. This is the first study to provide quantita-
tive nationwide estimates of the true number of ancient
and veteran trees; our previous research focused purely
on wood pastures in England, which cover an area of
�2780 km2, and the study predicted around 100,000 such
trees just in this habitat (Nolan, Reader, et al., 2021).
Other estimates have guessed figures close to nine
million ancient or veteran trees across the whole UK
(Fay, 2004), so our estimates do not seem wildly inflated.
Nevertheless, our results suggest that there is much work
to do to find these trees and add them to the ATI.

Field validation with independent, unbiased sampling
is probably the gold standard when evaluating the
performance of distribution models and predictive maps,
and yet it is rarely used (Getz et al., 2018). Other model
validation methods exist, for example, the use of aerial or
historical maps (Nolan, Reader, et al., 2021), but most
commonly model performance is assessed using methods
of internal validation: Often the retention of a portion of
the data to test the models or a cross-validation approach

(a) No correction (b) Systematic sampling – 2 km (c) Systematic sampling – 5 km

(d) Cluster analysis (e) Record density bias file (f) Wood pasture bias file

F I GURE 3 Predicted distribution maps of habitat suitability for ancient and veteran trees across England from (a) a model with no bias

correction and some of the highest performing maximum entropy (MaxEnt) bias correction methods, (b, c) systematic sampling using grids

of 2- and 5-km resolution, (d) cluster analysis, (e) record density bias file, and (f) wood-pasture bias file. Habitat suitability ranges from low

suitability (blue) to high suitability (red).
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is considered sufficient to validate models and make
accurate predictions (Fielding & Bell, 1997), with AUC
the most common evaluation statistic used for this.
However, measuring model accuracy using AUC and
cross-validation has been criticized because it is likely to
inflate perceptions of model performance owing to spatial
autocorrelation in the species data (Lobo et al., 2008;
Peterson et al., 2008). Additionally, any data retained to
test the model from a biased species data set will suffer
the same bias as the data used to fit the model, thereby
giving false confidence that significant predictors of
species occurrence are predicting the underlying ecology,
when they are actually predictors of sampling effort.
Therefore, to evaluate models fully and to assess the
utility of different sampling bias correction methods, it is
important to use unbiased field data where possible.

Because they were collected under standardized
conditions, and recorders were blind to model predictions,
the new field data with which we sought to validate our
models were both free from many of the sources of bias
likely to be present in the ATI data set (see Introduction)
and independent in the sense that model predictions

should not have influenced how abundance was estimated
for the sites targeted. However, our choice of sampling
strategy was not entirely random: We chose a proportion
of squares to survey based on the model predictions
to ensure some squares would contain trees and, thus,
increase the chances that our relatively low power field
test would detect a signal of the relationship between
model predictions and the ground truth, against the
inevitable background noise. This nonrandom element in
our sampling means that our field data were not entirely
free from sampling bias and that the value of the
inferences made from them could be affected by the issues
known to be associated with “preferential sampling” in
studies of this kind (Diggle et al., 2010). Nevertheless, we
believe that the very different and highly standardized
method of data collection we employed, relative to that
used to create the original data set, provides a much more
robust validation of the conclusions we reached than
would have been possible with internal validation alone.
Thus, we believe our maps are likely to be biologically
informative and robust against the obvious sampling
bias in the ATI, something that relatively few studies can

ZI prediction

Count predictions Whole model predictions Excess zero

Poisson

Negative binomial

F I GURE 4 Predicted maps of abundance of ancient and veteran trees across England from Poisson and negative binomial

(NB) zero-inflated (ZI) models. Three types of predictions are shown: (1) count prediction only from count component of ZI model,

(2) whole model prediction from whole ZI model, and (3) excess zero prediction, which represents probability that an observation is

likely to be an excess zero (i.e., a “false absence”). Red areas in predicted abundance maps represent areas of high abundance, whereas

in zero-probability maps they represent places where there is likely to be undersampling.
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claim. Alongside fine-tuning modeling procedures and
understanding ecological systems, the feasibility of collecting
additional data for model validation should always be an
important consideration of an ecological study.

Spatial filtering, especially the systematic sampling
technique, proved to be one of the most effective bias
correction methods overall based on both internal validation
using AICc and field validation. This method is known to be
particularly useful for wide-ranging, heavily sampled species
and has been shown to reduce both type I and type II errors
(Kramer-Schadt et al., 2013). However, it is often limited by
sample size because reducing the number of occurrence
records can result in poor model predictions. Furthermore,
the best choice of spatial filter may differ depending on
environment; for example, Boria et al. (2014) suggested that
mountain regions need smaller spatial filters than other
areas. There is also the risk of reducing clustering in areas
that truly represent high ecological value for a species
(Fourcade et al., 2014). Nevertheless, the large number of
records in the ATI, as well as the large range of the trees
across the UK, means spatial filtering is likely to be highly
effective for this database. A similar study using spatial
filtering with large species databases also reported good
results compared to independent field data (Law et al.,
2017), and the researchers concluded that their models
were suitable for application to practical management
scenarios. We believe that our similarly high-performing,
independently validated models are also suitable for
management applications and could provide valuable
insight into the areas most suitable for immediate practical
ancient and veteran tree conservation measures.

It is notable that field validation often ranked models
differently compared to internal model validation; based
purely on internal model evaluation, we would have
inferred that the best bias correction method was the
cluster analysis spatial filtering technique, followed by
the ZI models, both of which performed less well when
evaluated against the field data using AUC or Spearman
rank correlations. The performance of the bias files also
differed greatly between internal and field validation,
although wood-pasture habitat performed well using both
methods. Wood pastures have strong connections to ancient
and veteran trees and are the most studied of the habitats
in which these organisms are found (Farjon, 2017; Hartel
et al., 2018; Rackham, 1994). Additionally, many wood
pastures in the UK form part or the whole of a site of
interest from a tourism or aesthetic point of view, for
example, National Trust sites or public parkland (Lonsdale,
2013; Rackham, 1994). Therefore, it is no surprise that
wood-pasture spatial distributions exert strong influences
on recorded ancient and veteran tree distributions, via
effects on both ecology and sampling effort: Both the count
prediction of abundance and the probability of a grid square

being sampled from the ZI models were predicted to be
higher in grid squares with greater coverage of wood
pasture. In the bias-corrected MaxEnt models, wood-pasture
importance as a predictor did decrease significantly
compared to the uncorrected model, suggesting it has a
significant influence on sampling bias in the ATI, yet it
remained the most important predictor overall. This
explains why in all the predicted distribution maps, even
when sampling bias was corrected for, many grid squares
contained wood pastures that had very high suitability
for ancient and veteran trees. It is therefore of high
importance to protect habitats like wood pastures or
National Trust sites for the conservation of ancient and
veteran trees, and studies like ours can provide the data
(e.g., predictions of high numbers in these areas) in
support of changes to policy and conservation measures
concerning these habitats that will benefit these trees.

Background manipulation methods also performed
differently between internal model and field validation.
They were relatively good at predicting raw tree
abundance found during the field surveys, especially in
squares with high numbers of trees, but not so good at
predicting tree density (accounting for survey effort
estimates) or producing models that fitted well to the
original data. Although there has been some success with
this method in other studies (Phillips et al., 2009), it was
previously considered to perform worse than other methods
(Fourcade et al., 2014), possibly because background points
were restricted to too narrow an area, reducing model
accuracy (Thuiller et al., 2004). Understanding the optimum
background area size and considering both the species
range and the extent of sample bias are likely to be case
specific and should be considered before using this method
for bias correction.

The performance of ZI models varied the most across
validation methods; internal model evaluation showed
that ZI models provided a very good fit to the raw data
(low AICc values) but low predictive power (poorer AUC
performance), whereas field validation suggested that
the models were very well suited to predicting raw
abundance or density, especially of outlier observations
where abundance was high, but poor at predicting
presence–absence and ranked abundance and density. It
is important to note that variation in model performance
will likely differ across study species, geographic area,
and sampling protocols. Therefore, the best models
presented here for ancient and veteran trees will not
always be the best choices in other scenarios, and we
advise researchers to design and test their own hypotheses
about sampling bias patterns in their data. However, we
do believe that ZI models are highly suitable for modeling
sampling bias and should be considered as candidate
methods in future studies because of their benefits
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compared to other models. For example, these were the
only models to provide some independent insight into
potential causes of bias in the original data by examining
potential causes of excess zeroes (Nolan, Gilbert, &
Reader, 2021). The ZI models used showed that many
predictors had some influence on the proportion of excess
zeroes in the ATI data, the majority of which are likely to
influence both the ecology of the trees and the likelihood
of them being sampled, including altitude, type of land or
soil, distance to roads and watercourses, historic land
use, and cover of forests, woods and wood pasture.
Nevertheless, it is likely that predictors that also influenced
the count component of the ZI model, for example altitude,
have a greater influence on the ecology, whereas those
influencing only the zero component, such as distance from
a watercourse, are more likely reliable indicators of
sampling effort. The high number of predictors potentially
influencing both the tree ecology and sampling processes is
likely the reason why the whole model predictions were
better overall than the count predictions: A proportion
of the excess zeroes in the ZI zero component are
probably biological zeroes rather than being caused
by undersampling. Removing the influences of these
processes from the model predictions (which is what the
count predictions do) would therefore remove meaningful
biological information from the overall prediction maps.

Another major benefit of ZI models is that they can
be used to generate distribution maps of the predicted
excess zeroes, providing insight into areas that may
have been under- or oversampled, thereby helping
those planning future sampling and conservation
efforts. In our study, Cornwall and Devon counties
were, for example, predicted to have high numbers of excess
zeroes and are therefore good candidates for extra targeted
surveys. Although ZI models were previously used to fit
SDMs (Bouyer et al., 2015; Lyashevska et al., 2016), this is
the first time they were successfully applied to identify
causes of and to correct for sampling bias, and our results
highlight their potential advantages over other more
conventional methods of sampling bias correction. We
believe ZI models have strong potential in the fields of
ecological modeling and practical conservation.

Our results first and foremost provide a robust
prediction of ancient and veteran tree distributions
across England that can be used for conservation
planning and decision-making. Until now, there has
been no real measure of the landscape-scale value of
this habitat and how it interconnects. Our work shows
the overall collective value of this irreplaceable natural
resource and should frame the debate for further
serious discussion about what level of effort will be
required to map, monitor, and manage ancient and
veteran trees in the future. In addition, despite the

difficulties presented by a global pandemic, our study
demonstrates how citizen scientists can be mobilized
to conduct independent field validation of models built
from large publicly accessible databases, increasing
confidence in and the utility of model predictions.
Our results also underline the impact of sampling
bias in citizen-derived data sets on the effectiveness
of ecological models in conservation. Correcting for
sampling bias is essential for preventing incorrect
inferences from distribution models influencing practical
conservation decisions.
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